DOI QR코드

DOI QR Code

Preparation and characterization of ibuprofen-loaded alginate microspheres using ethylenediamine as a crosslinker

  • 발행 : 2008.06.30

초록

In this study, ionotropic gelation method was used for the preparation of ibuprofen-loaded calcium alginate (CALG) and ethylenediamine (EDA) treated calcium alginate (EDA-CALG) microspheres. The effect of EDA-treatment on drug entrapment efficiency, particle size, morphology, swelling behavior and in vitro release characteristics of the microspheres was investigated by varying its concentration from 0.5 to 2% (v/v). The reduction in drug entrapment efficiency by a maximum of 44.60% was noted for EDA-CALG microspheres compared to untreated CALG microspheres. The particle size and swelling index of EDA-CALG microspheres were reduced with increasing EDA concentration. All the microspheres were observed to retain their spherical shapes with rough surfaces. EDA-CALG microspheres prepared using 1% and 2% v/v EDA, released almost all of its content within 7 h in pH 6.8 phosphate buffer, however, CALG microspheres were found to release the same within 3 h. The intensity of melting endothermic peak of ibuprofen reduced significantly at lower drug load as experienced from DSC thermograms. The FT-IR spectrum of pure ibuprofen, ibuprofen-loaded CALG and EDA-CALG microspheres showed the characteristic band of C = O stretching vibration of ibuprofen. Hence, this study revealed that EDA can be employed for the preparation of ibuprofen-loaded CALG microspheres to retard the drug release to some extent.

키워드

참고문헌

  1. Acarturk F, Takka S. (1999) Calcium alginate microparticles for oral administration: II. Effect of formulation factors on drug release and drug entrapment efficiency. J. Microencapsul. 16, 291-301 https://doi.org/10.1080/026520499289013
  2. Anal AK, Bhopatkar D, Tokura S, Tamura H, Stevens WF. (2003) Chitosan-alginate multilayer beads for gastric passage and controlled intestinal release of protein. Drug Dev. Ind. Pharm. 29, 713-724 https://doi.org/10.1081/DDC-120021320
  3. Anal AK, Stevens WF. (2005) Chitosan-alginate multilayer beads for controlled release of ampicillin. Int. J. Pharm. 290, 45-54 https://doi.org/10.1016/j.ijpharm.2004.11.015
  4. Arica B, Calis S, Atilla P, Durlu NT, Cakar N, Kas HS, Hincal AA. (2005) In vitro and in vivo studies of ibuprofen-loaded biodegradable alginate beads. J. Microencapsul. 22, 153-165 https://doi.org/10.1080/02652040400026319
  5. Bhopatkar D, Anal AK, Stevens WF. (2005) Ionotropic alginate beads for controlled intestinal protein delivery: Effect of chitosan and barium counterions on entrapment and release. J. Microencapsul. 22, 91-100 https://doi.org/10.1080/02652040400026434
  6. Bodmeier R, Wang J. (1993) Microencapsulation of drugs with aqueous polymer dispersions. J. Pharm. Sci. 82, 191-194 https://doi.org/10.1002/jps.2600820215
  7. Calis S, Arica B, Kas HS, Hincal AA. (2002) 5-flurouracil - loaded alginate microspheres in chitosan gel for local therapy of breast cancer. In: Chitosan in pharmacy and chemistry, edited by Muzzarelli RAA, Muzzarelli C, pp. 65-69, Atec, Italy
  8. Cary R, Dobson S, Delic J. (1999) 1, 2-diaminoethane (Ethylenediamine), International Programme on Chemical Safety (IPCS): Concise International Chemical Assessment Document; 15, World health organization, Geneva
  9. Coppi G, Lannuccelli V, Leo E, Bernabei MT, Cameroni R. (2001) Chitosan-alginate microparticles as a protein carrier. Drug Dev. Ind. Pharm. 27, 393- 400 https://doi.org/10.1081/DDC-100104314
  10. Davis SS, Hardy JG, Taylor MJ, Whalley DR, Wilson CG. (1984) A comparative study of the gastrointestinal transit of a pellet and tablet formulation. Int. J. Pharm. 21, 167-177 https://doi.org/10.1016/0378-5173(84)90091-7
  11. Dubernet C, Benoit JP, Peppas NA, Puisieux F. (1995) Ibuprofen loaded ethylcellulose/polystyrene microspheres: An approach to get prolonged drug release excipients loaded alginate beads. Int. J. Pharm. 116, 125-128 https://doi.org/10.1016/0378-5173(94)00281-9
  12. El-Gibaly I, Anwar MM. (1998) Development, characterization and in vivo evaluation of polyelectrolyte complex membrane gel microcapsules containing melatonin-resin complex for oral use. Bull. Pharm. Sci. 21, 117-139
  13. Follonier N, Doelkar E. (1992) Biopharmaceutical comparison of oral multiple unit and single unit sustained release dosage forms. STP Pharm. Sci. 2, 141-158
  14. Gombotz WR, Wee SF. (1998) Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31, 267-285 https://doi.org/10.1016/S0169-409X(97)00124-5
  15. Gupta MK, Vanwert A, Bogner RH. (2003) Formation of physically stable amorphous drugs by milling with neusilin. J. Pharm. Sci. 92, 536-551 https://doi.org/10.1002/jps.10308
  16. Gursoy A, Cevik S. (2000) Sustained release properties of alginate microspheres and tabletted microspheres of diclofenac sodium. J. Microencapsul. 17, 565-575 https://doi.org/10.1080/026520400417621
  17. Halder A, Mukherjee S, Sa B. (2005) Development and evaluation of polyethyleneimine-treated calcium alginate beads for sustained release of diltiazem. J. Microencapsul. 22, 67-80 https://doi.org/10.1080/02652040500045003
  18. Kikuchi A, Kawabuchi M, Sugihara M, Sakurai Y. (1997) Pulsed dextran release from calcium-alginate gel beads. J. Control Release 47, 21-29 https://doi.org/10.1016/S0168-3659(96)01612-4
  19. Korsmeyer RW, Gurny R, Doelker EM, Buri P, Peppas NA. (1983) Mechanism of solute release from porous hydrophilic polymers. Int. J. Pharm. 15, 25-35 https://doi.org/10.1016/0378-5173(83)90064-9
  20. Ostberg T, Lund EM, Graffner C. (1994) Calcium alginate matrices for multiple unit administration: IV. Release characteristics in different media. Int. J. Pharm. 112, 241-248 https://doi.org/10.1016/0378-5173(94)90360-3
  21. Padmanabhan K, Smith TJ. (2002) Preliminary investigation of modified alginates as a matrix for gene transfection in a HeLa cell model. Pharm. Dev. Technol. 7, 97-101 https://doi.org/10.1081/PDT-120002235
  22. Peppas NA. (1985) Analysis of Fickian and non- Fickian drug release from polymers. Pharm Acta Helv 60, 110-111
  23. Pignatello R, Spadaro D, Vandelli MA, Forni F, Puglisi. (2004) Characterization of the mechanism of interaction in ibuprofen-eudragit RL100${\circledR}$ coevaporates. Drug Dev. Ind. Pharm. 30, 277-288 https://doi.org/10.1081/DDC-120030421
  24. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur. (1993) Development of a new drug carrier made from alginate. J. Pharm. Sci. 82, 912-916 https://doi.org/10.1002/jps.2600820909
  25. Robinson D, De S. (2003) Polymer relationship during preparation of chitosan-alginat and poly- l-lysinealginate nanospheres. J. Control Release 89, 101-112 https://doi.org/10.1016/S0168-3659(03)00098-1
  26. Ronan JM, Thompson SA. (2000) Medical devices comprising ionically and non-ionically crosslinked polymer hydrogels having improved mechanical properties. United States Patent, 6060534
  27. Sa B, Mondal UK, Prasad NR, Jha T. (1996) Development of indomethacin and ibuprofen loaded polymethyl methacrylate microparticles. Pharm. Sci. 2, 209-213
  28. Sa B. (1991) Studies on the release of theophylline from polyvinyl acetate microspheres. Drug Dev. Ind. Pharm. 27, 893-900 https://doi.org/10.3109/03639049109040825
  29. Saravanan M, Bhaskar K, Srinivasa Rao, Dhanaraju MD. (2003) Ibuprofen-loaded ethylcellulose/polystyrene microspheres: An approach to get prolonged drug release with reduced burst effect and low ethylcellulose content. J. Microencapsul. 20, 289-302 https://doi.org/10.1080/0265204031000093087
  30. Sheftel VO. (1995) Handbook of Toxic Properties of Monomers and Additives. New York: CRC Press/ Lewis Publishers, p. 210
  31. Sinha VR, Trehan A. (2003) Biodegradable microspheres for protein delivery. J. Control Release 90, 261-280 https://doi.org/10.1016/S0168-3659(03)00194-9
  32. Takka S, Acarturk F. (1999) Calcium alginate microparticles for oral administration: I: Effect of sodium alginate type on drug release and drug entrapment efficiency. J. Microencapsul. 16, 275-290
  33. Tamilvanan S, Sa B. (1999) Effect of production variables on the physical characteristics of ibuprofenloaded polystyrene microparticles. J. Microencapsul. 16, 411-418 https://doi.org/10.1080/026520499288870
  34. Tanihara M, Suzuki Y, Yamamoto E, Noguchi A, Mizushima Y. (2001) Sustained release of basic fibroblast growth factor and angiogenesis in a novel covalently crosslinked gel of heparin and alginate. J. Biomed. Mater. Res. 56, 216-221 https://doi.org/10.1002/1097-4636(200108)56:2<216::AID-JBM1086>3.0.CO;2-N
  35. Thu B, Bruheim P, Espevik T, Smidsrod O. Soon- Shiong P, Skjak-braek G. (1996) Alginate polycation microcapsules. II. Some functional properties. Biomaterials 17, 1069-1079 https://doi.org/10.1016/0142-9612(96)85907-2
  36. Weib G, Knoch A, Laicher A, Stanislans F, Daniels R. (1993) Influence of polymer charge density on the simple coacervation of cellulose acetate phthalate. Eur. J. Pharm. Biopharm. 39, 239-243
  37. Yang RSH, Garman RH, Maronpot RR, McKelvey JA, Weil CS, Woodside MD. (1983) Acute and subchronic toxicity of ethylenediamine in laboratory animals. Fundam. Appl. Toxicol. 3, 512-520 https://doi.org/10.1016/S0272-0590(83)80097-9
  38. Yotsuyanagi T, Ohkubo T, Ohhashi T, Ikeda K. (1987) Calcium induced gelation of alginic acid and pHsensitive reswelling of dried gels. Chem. Pharm. Bull. 35, 1555-1563