A Transmission Electron Microscopy Study on the Crystallization Behavior of In-Sb-Te Thin Films

In-Sb-Te 박막의 결정화 거동에 관한 투과전자현미경 연구

  • Kim, Chung-Soo (Department of Materials Science and Engineering, KAIST) ;
  • Kim, Eun-Tae (Department of Materials Science and Engineering, KAIST) ;
  • Lee, Jeong-Yong (Department of Materials Science and Engineering, KAIST) ;
  • Kim, Yong-Tae (Nano-Devices Research Center, Nano-Science Research Division, Korea Institute of Science and Technology (KIST))
  • 김청수 (KAIST 신소재공학과) ;
  • 김은태 (KAIST 신소재공학과) ;
  • 이정용 (KAIST 신소재공학과) ;
  • 김용태 (한국과학기술연구원 (KIST) 나노과학연구본부 나노소자연구센터)
  • Published : 2008.12.31

Abstract

The phase change materials have been extensively used as an optical rewritable data storage media utilizing their phase change properties. Recently, the phase change materials have been spotlighted for the application of non-volatile memory device, such as the phase change random access memory. In this work, we have investigated the crystallization behavior and microstructure analysis of In-Sb-Te (IST) thin films deposited by RF magnetron sputtering. Transmission electron microscopy measurement was carried out after the annealing at $300^{\circ}C$, $350^{\circ}C$, $400^{\circ}C$ and $450^{\circ}C$ for 5 min. It was observed that InSb phases change into $In_3SbTe_2$ phases and InTe phases as the temperature increases. It was found that the thickness of thin films was decreased and the grain size was increased by the bright field transmission electron microscopy (BF TEM) images and the selected area electron diffraction (SAED) patterns. In a high resolution transmission electron microscopy (HRTEM) study, it shows that $350^{\circ}C$-annealed InSb phases have {111} facet because the surface energy of a {111} close-packed plane is the lowest in FCC crystals. When the film was heated up to $400^{\circ}C$, $In_3SbTe_2$ grains have coherent micro-twins with {111} mirror plane, and they are healed annealing at $450^{\circ}C$. From the HRTEM, InTe phase separation was occurred in this stage. It can be found that $In_3SbTe_2$ forms in the crystallization process as composition of the film near stoichiometric composition, while InTe phase separation may take place as the composition deviates from $In_3SbTe_2$.

상변화 메모리 재료로 사용 가능한 In-Sb-Te (IST) 박막을 RF 마그네트론 스퍼터링법을 사용하여 증착한 후 열처리를 통해 온도에 따른 결정화 거동 및 미세구조를 투과전자현미경(TEM)을 통해 분석하였다. IST 박막은 as-dep 상태에서 비정질상으로 존재하였으며, 열처리 온도에 따라 결정상인 InSb, $In_3SbTe_2$, InTe으로 상변화가 일어났다. 이러한 상변화는 기존의 삼원계 상태도와 다른 비평형 상태에서의 상변태가 이루어짐을 확인할 수 있다. 상변화 과정 중 박막의 두께가 무질서하게 배열되었던 비정질상에서 규칙적인 배열을 갖는 결정질상으로 변할수록 감소하는 경향을 확인하였다. 또한 각각의 결정립의 크기도 온도가 증가할수록 증가하는 것을 관찰하였다. 특히, $350^{\circ}C$ 열처리한 박막의 InSb 상은 비정질 상태에서 표면에너지가 가장 낮은 {111}면을 따라 facet을 이루며 결정화가 이루어졌다. 온도가 증가함에 따라 $In_3SbTe_2$로 상변화가 일어났는데, $400^{\circ}C$ 열처리한 시편의 경우 미소영역에서 마이크로 트윈들이 관찰되었다. 이 면결함은 {111}면을 따라 양쪽의 격자점들이 일치하는 정합 쌍정립계를 이루고 있었으며, $450^{\circ}C$에서 동일영역을 관찰해 본 결과 쌍정 결함들이 치유되어 {111} facet 면을 이루고 있는 것을 확인하였다. 또한 비교적 작은 영역에서 상분리가 일어난 InTe 상도 관찰하였다. InTe 상의 경우 포정반응 온도인 $555^{\circ}C$보다 낮은 온도에서 관찰되었는데, InTe의 (002)면과 $In_3SbTe_2$의 (111)면이 비슷한 면간거리를 가지고 있음을 확인하였다. 추가적으로 $500^{\circ}C$ 이상의 온도에서 이들의 결정학적 관계에 따른 상변화 과정에 연구가 수행되어야 할 것으로 생각된다.

Keywords

References

  1. Chattopadhyay T, Santandrea RP, Schnering HG: Temperature and pressure dependence of the crystal structure of InTe: A new high pressure phase of InTe. J Phys Chem Soids 46(3) : 351-356, 1985 https://doi.org/10.1016/0022-3697(85)90178-7
  2. Chen M, Rubin KA, Barton RW: Compound materials for reversible, phase-change optical data storage. Appl Phys Lett 49(9) : 502-504, 1986 https://doi.org/10.1063/1.97617
  3. Daly-Flynn K, Strand D: InSbTe phase-change materials for high performance multi-level recording. Jpn J Appl Phys 42: 795-799, 2003 https://doi.org/10.1143/JJAP.42.795
  4. Deneke K, Rabenau A: Uber die natur der phase $In_3SbTe_2$ mit kochsalzstruktur. Z anorg allgem Chem 333 : 201-208, 1964 https://doi.org/10.1002/zaac.19643330406
  5. Ha YH, Yi JH, Horii H, Park JH, Joo SH, Park SO, Chung U-In, Moon JT: An edge contact type cell for phase change RAM featuring very low power consumption. IEEE Symposium on VLSI Tech Dig : 175-176, 2003
  6. Lebedev AI, Michurin AV, Sluchinskaya IA, Demin VN, Munro I: Structure and electric properties of $InTe_{1-x}Se_x,\;In_{1-x}Ga_xTe$ and $In_{1-x}Tl_xTe$ solid solutions. Crystallogr Rep 45(4) : 555-559, 2000 https://doi.org/10.1134/1.1306560
  7. Maeda Y, Andoh H, Ikuta I, Minemura H: Reversible phase-change optical data storage in InSbTe alloy films. J Appl Phys 64(5) : 1715-1719, 1988 https://doi.org/10.1063/1.342502
  8. Men L, Jiang F, Gan F: Short-wavelength phase-change optical data storage in In-Sb-Te alloy films. Mat Sci Eng B-Solid 47 : 18-22, 1997 https://doi.org/10.1016/S0921-5107(97)02042-4
  9. Ovshinsky SR: Reversible electrical switching phenomena in disordered structures. Phys Rev Lett 21(20) : 1450-1453, 1968 https://doi.org/10.1103/PhysRevLett.21.1450
  10. Porter DA, Easterling KE: Phase transformations in metals and alloys, Van Nostrand Reinhold, New York, pp. 110-116, 1981
  11. Rao F, Song Z, Zhong M, Wu L, Feng G, Liu B, Feng S, Chen B: Multilevel data storage characteristics of phase change memory cell with doublelayer chalcogenide films $(Ge_2Sb_2Te_5\;and\;Sb_2Te_3)$. Jpn J Appl Phys 46(2) : L25-L27, 2007 https://doi.org/10.1143/JJAP.46.L25
  12. Sowa H: Relations between the zinc-blende and the NaCl structure type. Acta Cryst A 59 : 266-272, 2003 https://doi.org/10.1107/S0108767303006251
  13. Villars P, Prince A, Okamoto H: Handbook of ternary alloy phase diagrams, ASM International, pp. 12018-12034, 1994