가솔린엔진용 E-EGR 밸브 특성에 관한 연구
박철웅·김창기
한국기계연구원

A Study on the Characteristics of the Electronic EGR Valve for Gasoline Engine
Cheolwoong Park*·Changgi Kim
Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea
(Received 22 May 2007 / Accepted 20 August 2007)

Abstract : Since the 1960's, exhaust gas recirculation (EGR) has been used effectively in spark ignition (SI) engines to control the exhaust emissions of the oxides of nitrogen (NOx). The most important requirements for the application of EGR systems to conventional SI engines are controllable flow rate and good dynamic response. In order to evaluate the characteristics of the electronic EGR valve, a test bench which is consisted of blower, heater, air flow meter and driving unit for electronic EGR valve was set up to simulate engine operating conditions. During the tests, the valve actuation parameters were controlled and the valve lifts and flow rates were measured to infer the characteristics of EGR valve. The results confirmed the capabilities of mathematical analysis and it seems that the correction for the valve lift and potentiometer output is necessary to achieve precise control of EGR rates.

Key words : Gasoline engine(가솔린 엔진), Exhaust gas regulation(배기가스 제수화물), Electronic EGR valve(전자식 EGR 밸브), Valve lift(밸브 압경), Solenoid(صلى뇨이드)

Nomenclature

\[Q \]: flow rate, L/min
\[X_L \]: reactance, \(\Omega \)
\[L \]: inductance, H
\[\omega \]: angular frequency
\[f \]: frequency, Hz

1. 서 론

최근 강화되고 있는 환경규제에 따라 자동차부터 배출되는 오염물질 저감은 세계 각국의 자동차 업계의 최대의 주요 연구개발 목표이다. 자동차 배

c. 출가스 중 HC, CO 및 배연 등은 연소의 개선 및 후처리 등으로 그 저감 대책이 비교적 용이하나, 질소산화물 저감 기술은 연소와 연비에 미치는 약영향으로 인하여 개발에 어려움을 겪고 있다.1) 이러한 질소산화물의 저감기술의 하나로서 사용되고 있는 배출가스 저감기술 중 가장인 EGR(Exhaust Gas Regulation)은 질소산화물의 저감을 위해 저합하면서도 효과적인 방법 중 하나로서 가솔린 엔진에서는 이미 실용화 되어 되어 있다. 이는 배기가스의 CO\textsubscript{2}나 H\textsubscript{2}O 등의 흡기의 일부나 차관되어 혼입됨으로써 혼합기의 열용량이 증대되어 실린더 내 연소가스 온도상승을 억제하고, 공기 과잉율을 낮추어 Thermal NOx의 생성을 억제함으로써 전체 NOx 발생량을 줄인다. 또한 흡기의 일부가 산소농도가 낮

*Corresponding author, E-mail: cwpark@kimm.re.kr
은 배기가스로 치환되므로 연소실 내 산소가 감소하기 때문에 NOx의 생성이 억제된다. 2,3)

최근에는 배기가스 규제가 점차 엄격해지고 있는 상황에 대응하기 위해 정밀한 제어와 신속한 작동이 가능한 전자제어식 EGR 밸브 기술이 개발되어 적용되기 시작하였다. 4,5)

그러나 온전에서의 EGR 밸브는 사용온도 400℃의 내열성이 요구되며, 고온의 EGR가스에 의한 EGR 밸브의 작동성능 저하를 방지하기 위한 기술이 필요한 실정이다.

본 연구에서는 하이브리드화 가솔린 엔진의 연비향상의 일환으로서 EGR 시스템이 도입되었으며 엔진 작용에 앞서 EGR 유량 제어 시뮬레이터를 사용하여 EGR 밸브의 정적·동적 특성을 분석하고 수학적 해석을 통한 밸브 온도 특성을 실험과 계산을 통하여 검증하고자 하였다.

2. 실험장치 및 방법

2.1 실험장치

전자제어식 EGR 밸브의 유량특성을 실험하기 위해 Fig. 1의 개략도와 같은 실제 가솔린 엔진의 흡배기계를 모사한 EGR 시뮬레이터를 제작하였다. EGR 시뮬레이터는 펌프, 헤터 그리고 각종 밸브들로 구성되어 있으며, EGR 시스템 전후의 가스 온도, 압력, 유량 등을 독립적으로 조정할 수 있도록 함으로써 엔진의 전 응답조건을 모사할 수 있도록 설계되어 있다. 엔진흡입유량에 해당하는 유량 공급은 DC Motor(15kW, 8P)로 구동되는 supercharger를 사용하여 최대압 1.6bar, 최대유량 10,200L/min가 가능하도록 하였으며, 유량계를 사용하여 엔진흡입유량 및 EGR 가스 유량을 측정하였다.

EGR 밸브를 구동하는 장치로서, PWM(Pulse Width Modulation) 신호의 주파수 및 Duty의 가변이 가능한 Driver Unit(50~20,000Hz, 10A)를 제작하였다. 솔레노이드 부위의 온도제어를 위해 PID 제어에 의한 피드백 제어가 가능한 온도제어장치(TC-200P, 5kW)를 이용하였고, 실제 밸브의 양변 변화를 측정하기 위해 간격센서(DPU-10A)를 사용하였다.

특히 EGR 밸브 주요부의 온도변화 특성을 살펴보고 최대온도 1,000℃까지 가열이 가능한 In-line type의 heater를 제작·사용하였고, heater의 출력부

\[Q = Q_1 + Q_{EGR}, \quad Q_2 = Q_1 + Q_{EGR} \]

\[Q_1 : \text{스로틀링전 유량}, \quad Q_2 : \text{엔진흡입유량} \]

\[Q_{EGR} : \text{EGR 유량}, \quad Q_3 : \text{엔진배기유량} \]

\[Q_4 : \text{배기관 유량} \]

Fig. 1 EGR 유량제어 시뮬레이터의 개략도

Fig. 2 제작된 EGR 유량제어 시뮬레이터

에 열교환기와 EGR 밸브가 부착되는 배기유관 방향 구조로 설치하였다. Fig. 2는 제작된 EGR 시뮬레이터의 실험장치 모습을 나타낸다.

2.2 실험방법

본 연구에서 하이브리드 가솔린엔진에 적용하고자 선정된 EGR 밸브는 리니어 솔레노이드 타입의 전자식 EGR 밸브로서 밸브의 양변은 PWM 방식으로 제어되며 내장된 위치센서를 통해 ECU에 밸브 양변에 대한 정보를 공급하도록 되어있다.
리니어 솔레노이드 타입의 EGR 밸브는 실제 엔진상에서 나타날 수 있는 주변 환경 변화에 따라 그 특성을 달리하기 때문에 원활한 제어를 하기 위해서는 여러 조건에 대한 EGR 밸브의 정적, 동적 특성에 따라 파악할 필요가 있다. 따라서 실험은 솔레노이드의 인가전압, 구동 주파수, 밸브 양단 차압, EGR 가스온도 등 EGR 밸브 특성에 영향을 줄 수 있는 인자들을 변화시켰을 경우, 밸브의 실제 압력과 내장된 위치센서의 출력 특성이 어떤 변화를 나타내는지 살펴보았다.

전자제어식 EGR 밸브의 주요성능은 행정 대비 흡입의 특성, 작동 및 유지전압, 응답성 등이 표로 나타난다. 일반적인 설계점은 밸브 양압의 변화에 따라 일정한 전자기력 분포를 보이게 하여, 허스테리시스가 작고, 빠른 응답성을 보일 것 이다. 특히 EGR 밸브는 고온의 배기가스 및 엔진룸에 노출되는 특성으로 인해 고온에서의 안정적인 작동이 요구된다. 또한 엔진회전수 및 부하에 따라 적절한 EGR율을 확보하기 위해서는 회전수 변화 등에 충분히 반응할 수 있는 빠른 응답성이 필수적이다.

3. 실험결과 및 고찰

3.1 EGR 밸브의 구동신폨에 대한 작동특성

본 연구에서 사용된 전자제어식 EGR 밸브의 기본 작동성능을 파악하기 위해 솔레노이드 구동전압 및 제어신호 변화에 따른 밸브 압력 특성을 우선 파악하였다.

Fig. 3은 솔레노이드 구동 전압에 대한 EGR 밸브의 압력을 별도로 설치한 간극센서를 이용하여 측정한 결과이다. PWM 신호의 Duty 를 0%에서 100%까지 증가시켰을 때 최대 압력은 5.14mm로 동일하게 나타나지만 초기 개방과 최대 압력 시기는 인가 전압이 낮을수록 높은 Duty에서 발생한다. 이는 구동 전압의 감소에 따라 공급되는 전류가 감소하여 스프링의 힘을 이겨내는 흡입력이 약화되기 때문이이다. 낮은 구동 전압의 경우 허스테리시스 높이에서 도 보다 약화됨을 알 수 있는데, 이는 밸브의 폐쇄 과정에서 응답성 저하를 일으킬 수 있으므로 높은 구동 전압을 이용하는 것이 바람직하다.

Fig. 4는 구동 전압을 13.5V로 하였을 때, 구동 주

\[
X_L = \omega L = 2\pi f L
\]

Fig. 3 밸브 인가전압에 따른 EGR 밸브 압력 (140Hz)

Fig. 4 구동주파수에 따른 EGR 밸브 압력

파수에 따른 작동성능을 나타내고 있다. 주파수가 140Hz인 경우를 기준으로 특성을 비교해보면, 주파수가 높을수록 높은 Duty에서 밸브의 초기 개방이 일어나고 허스테리시스도 크게 나타났다. 이것은 구동전압이 낮을 때 나타나는 현상(Fig.4)과 동일한 것으로 주파수가 높을수록 흡입력이 감소되는 것을 나타낸다.

일반적으로 솔레노이드를 구성하고 있는 코일의 전류가 최고의 경우 코일 자체에서 발생하는 자속의 변화가 코일에 다시 영향을 주게 되는데, 이로 인해 발생하는 역기전력의 비율을 인텍턴스로 나타낼 수 있다. 인텍턴스에 의한 유도 리액턴스, \(X_L\)은 다음과 같이 나타낼 수 있다.

\[
X_L = \omega L = 2\pi f L
\]
식 (1)에서 보는 것처럼 유도 리액턴스 X_L은 인
덕턴스 L과 주파수 f에 비례하기 때문에 일정 전압
하에서는 X_L 이 클수록 회로전류는 작아지게 된다.
결국 주파수가 클수록 전류는 솔레노이드의 코일을
통하여 흐르기 어렵기 때문에 흡인력이 감소되어
나타나는 결과로 볼 수 있다.

3.2 EGR 밸브의 주변환경에 대한 작동특성
솔레노이드에 전압이 인가되면 압축가 자기
회로에서 가동부를 흡인하여 스프링의 탄력에 상당
하는 힘이 발생하면서 기계적인 동작이 일어나게
된다. 실험에 사용된 EGR 밸브와 같이 로드의 작동
방향이 EGR 가스 유동에 대하여 반대 방향일 경우
에는 스프링의 탄력뿐만 아니라 흡배기 압력차에
의한 힘이 추가로 작동되기 때문에 더 큰 흡인력이
요구된다.

Fig. 5는 13.5V, 140 Hz의 구동전압이 솔레노이드
에 인가되었을 때 흡배기 압력차의 변화에 대한
EGR 밸브의 가동특성을 나타낸다. 흡배기 압력차
가 낮은 경우에는 30%의 Duty에서 밸브의 개반이
여러난지만 50kPa의 높은 압력차에서는 60% 미만
의 Duty에서는 솔레노이드의 흡입력이 스프링의 탄
력 및 흡배기 압력차에 의한 히이 가기지 못하여 양
정의 변화가 일어나지 않는다.

그러나 60% 이상의 Duty 조건에서 일정 밸브의
개반이 일어나면, 밸브 양정이 순간적으로 커지고
낮은 배기 압력의 경우와 거의 같은 수준의 밸브 양
정을 나타낸다. 이것은 밸브의 개반이 일어난 후에
는 EGR 가스가 밸브 로드의 축면의 유동 방향으로
흐르기 때문에, 압력이 밸브 로드에 집중되지 않기
때문이다.

EGR 밸브는 밸브의 하부로 유입되는 고온의 가
스로 인하여 온도가 상승하며, 특히 유입되는 가스
와 직접 닿고 있는 밸브 로드 부분의 온도가 현
저하게 인가된다. 많은 열이 밸브하우징뿐만 아니
라 밸브 로드를 통해 밸브상단부로 전달되기 때문
에 열에 의한 손상에 취약한 솔레노이드와 밸브 로
드의 변위에 따른 전압을 출력하는 Potentiometer에
영향을 줄 수 있다.

온도에 의한 전자식 EGR 밸브의 가동특성을 살

![Fig. 5 흡배기 압력차에 따른 EGR 밸브 양정](image1)

![Fig. 6 솔레노이드의 온도에 따른 EGR 밸브 양정](image2)
레노이드의 흡입력 저하에 의한 개방기지 조절과 밸브 양정 기울기의 감소로 나타난 것으로 볼 수 있다. 코일의 온도상승은 EGR 가스의 열량이에 의한 것뿐만 아니라 솔레노이드의 코일에 전압이 장시간 인가될 경우에도 발생한다.

주파수에 의한 전력손실은 히스테리시스 증가에 직접 비례하며 자기적 히스테리시스는 기자력의 변화에 대해 측감이 응답하는 변화율에 영향을 미친다. 솔레노이드 밸브와 같이 기자력 변화에 대하여 자속의 변화가 빠르고 미세적인 응답특성을 가지는 전자기기에서는 주파수의 증가가 기울기에 영향을 미치지 않지만, 온도의 증가로 인한 흡입력의 변화는 기울기에 영향을 주는 것으로 보인다.

Potentiometer는 전자식 EGR 밸브 로드의 위치 결정을 위한 피드백 제어의 기준이 되는 변위에 따른 전압을 출력하는 센서의 일종으로서, EGR 가스의 열이 EGR 밸브 상단으로 전달될 경우 출력 전압에 영향을 줄 수 있다.

온도에 따른 Potentiometer의 출력 전압은 밸브 양정으로 환산한 결과를 Fig. 8에 나타내었다. 온도가 낮은 경우에는 실제 양정과 거의 차이가 나지 않지만, 온도가 상승함수록 실제 양정에 비해 높은 결과를 출력하고 있음을 알 수 있다. 측정온도 175°C의 경우 밸브 최대 양정내비 약 5%의 오차를 보이고 있다.

Fig. 9에 나타난 것과 같이 전압출력의 오차는 실제 밸브 양정에 비해 전체적으로 보다 높은 결과를 출력하고 있고, 이러한 현상은 온도가 증가함수록 더욱 현저하게 나타나고 있다. 따라서 전자식 EGR 밸브를 엔진에 적용하여 Potentiometer를 이용한 피드백 제어를 할 경우, 정확한 밸브 로드의 양정을 근사하기 위해서는 온도의 변화에 따른 Potentiometer의 출력 전압 보정 및 솔레노이드의 흡입력 저하에 따른 보정이 필요하며 응답성의 저하도 고려되어야 한다.

3.3 EGR 밸브의 동적 응답특성

EGR 밸브가 가져야 할 특성 중 동적 응답특성은 엔진세어측면에서 매우 중요한 항목으로서 급변하는 엔진운전조건을 추정하기 위해서는 빠른수록 유
리하다. 동적 응답특성은 앞선 정적 특성과 마찬가지로 솔레노이드에 인가되는 구동신호와 밸브 주변의 환경에 영향을 받는다. 동적 응답특성을 나타내는 지표는 Fig. 10의 무효시간(t_U)과 응답시간(t_a)으로 규정할 수 있다.
무효시간은 코일에 전압을 인가한 시점부터 휘
인리미터스프링력을 이겨 기계적인 일이 일어나는데
까지 필요한 시간을 나타내는 것이다. 일정한 온도
에서 솔레노이드의 인덕턴스 값은 일정하며 내부의
휘인리미터가 존재하지 않을 경우 응답시간은 무효시간
에 비해하게 된다.8) 그러나 이렇게 제한된 무효시간
은 솔레노이드 내부의 외면리미터가 존재하지 않고, 인
덕턴스가 일정하다는 여러 가정이 포함되어 있기
때문에 실제 측정하는 무효시간과는 큰 차이를 보
이고 있다.
Fig. 11은 솔레노이드에 인가되는 구동전압과 솔
레노이드온도에 대해 응답시간을 측정한 결과를 나
타낸 것이다. 시험조건 내에서 무효시간은 15ms 이
하이며 조건별 변동성은 7ms 이하로 크지 않았지만,
응답속도의 경우 13.5V 조건에서 60ms 정도이
나 전압이 강하하거나 온도가 높은 경우 응답성이
늦어졌다. 응답성 향상은 배기구에 대한 고온 내
구성이란 밸브로드의 재질선택 문제, 휘배기
개의 압력차 조건 등과 trade off 관계에 있기 때문에
현실적으로 많은 어려움이 있으나, 온도 및 무효시
간과의 비례 특성을 고려할 때 EGR 가스로부터의
열전달을 줄이는 것도 응답성을 향상시킬 수 있는
방법으로 고려될 수 있다.

4. 결론
본 연구에서는 가솔린 엔진에서 전자식 EGR 밸
브의 작동 및 제어를 위한 기초연구로서, EGR 유량
제어 시뮬레이터를 제작하여 시험한 결과 다음과
같은 결론을 얻을 수 있었다.
1) 전자식 EGR 밸브의 솔레노이드에 인가되는 구
동 전압이 높을수록, 그리고 구동 주파수가 낮을
수록 낮은 Duty에서도 밸브의 끝이 일어나고
하스테리시스가 크게 나타났다.
2) 배기 압력이 낮은 경우에는 30%의 Duty에서 밸
브의 개반이 일어나지만 50kPa의 높은 배기 압력
에서는 60% 미만의 Duty에서는 솔레노이드의 환
인리미터스프링의 탄력 및 배기 압력에 의한 힘을
이기지 못하여 완전한 변화가 일어나지 않았다.
3) 솔레노이드 부분의 온도가 높을수록 높은 Duty
에서 밸브의 개반이 일어나고, Duty 증가 대비 밸
브 영전의 증가를 나타내는 기울기는 점점 감소
하였다.
4) EGR 가스의 압력이 EGR 밸브 상단으로 전달되면
솔레노이드 부분의 온도 및 Potentiometer의 온도
상승에 영향을 주고, 그 결과 응답시간을 증가시
키고 실제 양정 대비 최대 약 5%의 오차를 나타
낸다.
5) 전자식 EGR 밸브를 엔진에 적용하여 Potentiom-
eter를 이용한 피드백 제어를 할 경우, 정확한
References

