DOI QR코드

DOI QR Code

Characteristic features of concrete behaviour: Implications for the development of an engineering finite-element tool

  • Kotsovos, Michael D. (Laboratory of Concrete Structures, National Technical University of Athens) ;
  • Pavlovic, Milija N. (Department of Civil Engineering, Imperial College) ;
  • Cotsovos, Demetrios M. (Department of Civil Engineering, Imperial College)
  • Received : 2007.04.10
  • Accepted : 2008.06.23
  • Published : 2008.06.25

Abstract

The present article summarises the fundamental characteristics of concrete behaviour which underlie the formulation of an engineering finite element model capable of realistically predicting the behaviour of (plain or reinforced) concrete structural forms in a wide range of problems ranging from static to impact loading without the need of any kind of re-calibration. The already published evidence supporting the proposed formulation is complemented by four additional typical case studies presented herein; for each case, a comparative study is carried out between numerical predictions and the experimental data which reveals good agreement. Such evidence validates the material characteristics upon which the FE model's formulation is based and provides an alternative explanation regarding the behaviour of structural concrete and how it should be modelled which contradicts the presently (widely) accepted assumptions adopted in the majority of FE models used to predict the behaviour of concrete.

Keywords

References

  1. Agrwal, A. B., Jaeger, L.G. and Mufti, A. A. (1981), "Response of reinforced concrete shear walls under ground motions", J. Struct. Div., ASCE, 107, 395-411.
  2. Barnard, P. R. (1964), "Researches into the complete stress-strain curve for concrete", Mag. Concrete Res., 16(49), 203-210. https://doi.org/10.1680/macr.1964.16.49.203
  3. Barpi, F. (2004), "Impact behaviour of concrete: a computational approach", Eng. Fracture Mech. 71, 2197-2213. https://doi.org/10.1016/j.engfracmech.2003.11.007
  4. Bathe, K. J. (1996), Finite Element Procedures, Prentice Hall, New Jersey.
  5. Cela, J. J. L. (1998), "Analysis of reinforced concrete structures subjected to dynamic loads with a viscoplastic Drucker-Prager model", Appl. Math. Modelling 22, 495-515. https://doi.org/10.1016/S0307-904X(98)10050-1
  6. Cervera, M., Oliver, J. and Manzoli, O. (1996), "A rate-dependent isotropic damage model for the seismic analysis of concrete dams", Earthq. Eng. Struct. Dyn. 25, 987-1010. https://doi.org/10.1002/(SICI)1096-9845(199609)25:9<987::AID-EQE599>3.0.CO;2-X
  7. Cotsovos D. M. (2004), "Numerical Investigation of structural concrete under dynamic (Earthquake and Impact) loading", PhD thesis, University of London, UK
  8. Cotsovos D. M. and Kotsovos M. D. (2008), "Cracking of RC beam/column joints: Implications for practical structural analysis and design", The Structural Engineer, 86(12), 17 June.
  9. Dube, J.-F., Pijaudier-Cabot, G. and La Borderie, C. (1996), "Rate dependent damage model for concrete in dynamics", J. Eng. Mech. Div. ASCE, 122, 359-380. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:5(359)
  10. Faria, R., Olivera, J. and Cervera, M. (1998), "A strain-based plastic viscous-damage model for massive concrete structures", Int. J. Solids Struct. 35, 1533-1558. https://doi.org/10.1016/S0020-7683(97)00119-4
  11. Faria R., Vila Pouca N. and Delgado R. (2002), "Seismic behaviour of a R/C wall: Numerical simulation and experimental validation", J. Earthq. Eng., 6, 473-408.
  12. Georgin, J. F. and Reynouard, J. M. (2003), "Modeling of structures subjected to impact: concrete behaviour under high strain rate", Cement Concrete Compos., 217, 131-143.
  13. Gomes, H. M. and Awruch, A. M. (2001), "Some aspects on three-dimensional numerical modelling of reinforced concrete structures using the finite element method", Advances in Eng. Software 32, 257-277. https://doi.org/10.1016/S0965-9978(00)00093-4
  14. Hatzigeorgiou, G., Beskos, D., Theodorakopoulos, D. and Sfakianakis, M. (2001), "A simple concrete damage model for dynamic FEM applications", Int. J. Comput. Eng. Sci., 2, 267-286. https://doi.org/10.1142/S1465876301000325
  15. Hughes, G. and Spiers, D. M. 1982, "An investigation on the beam impact problem", Cement and Concrete Association, Technical Report 546.
  16. Ile, N. and Reynouard, J. M. 2000, "Nonlinear analysis of reinforced concrete shear wall under earthquake loading", J. Earthq. Eng., 4, 183-213.
  17. Jelic, I., Pavlovic, M. N. and Kotsovos, M. D. (2004), "Performance of structural-concrete members under sequential loading and exhibiting points of inflection", Comput. Concrete, 1(1), 99-113. https://doi.org/10.1296/CAC2004.01.01.07
  18. Kishi, N., Mikami, H. and Ando, T. (2001), "An applicability of the FE impact analysis on shear-failuretype RC beams with shear rebars". 4th Asia-Pacific Conference on Shock and Impact Loads on Structures. 309-315.
  19. Kishi, N., Mikami, H., Matsuoka K. G. and Ando, T. (2002), "Impact behaviour of shear- failure-type RC beams without shear rebar", Int. J. Impact Eng., 27, 955-968. https://doi.org/10.1016/S0734-743X(01)00149-X
  20. Koh, C. G., Liu, Z. J. and Quek, S. T. (2001), "Numerical and experimental studies of concrete under impact", Mag. Concrete Res., 53, 417-427. https://doi.org/10.1680/macr.2001.53.6.417
  21. Kotsovos, M. D. (1983), "Effect of testing techniques on the post-ultimate behaviour of concrete in compression", Mater. Struct., RILEM, 16(91), pp. 3-12.
  22. Kotsovos M. D. and Pavlovic M. N. (1995), "Structural concrete: Finite-element analysis for limit-state design", Thomas Telford.
  23. Kotsovos, M. D. and Spiliopoulos, K. V. (1998a), "Modelling of crack closure for finite-element analysis of structural concrete", Comput. Struct., 69, 383-398. https://doi.org/10.1016/S0045-7949(98)00107-2
  24. Kotsovos, M. D. and Spiliopoulos, K. V. (1998b), "Evaluation of structural-concrete design-concepts based on finite-element analysis", Comput. Mech., 21, 330-338. https://doi.org/10.1007/s004660050309
  25. Lee, H.-S. and Woo, S.-W. (2002), 'Seismic performance of a 3-story RC frame in a low-seismicity region", Eng. Struct., 24, 719-734. https://doi.org/10.1016/S0141-0296(01)00135-3
  26. Lestuzzi, P., Wenk, T. and Bachmann, H. (1999), "Dynamic tests of RC structural walls on the ETH earthquake simulator", IBK Report No. 240, Institüt für Baustatik und Konstruktion: ETH, Zurich.
  27. Lu, Y. and Xu, K. (2004), "Modelling of dynamic behaviour of concrete materials under blast loading", Int. J. Solids Struct., 41, 131-143. https://doi.org/10.1016/j.ijsolstr.2003.09.019
  28. Malvar, L. J., Crawford, J. E, Wesevich, J. W. and Simons, D. (1997), "A plasticity concrete material model for DYNA3D", Int. J. Impact Eng., 19, 847-873. https://doi.org/10.1016/S0734-743X(97)00023-7
  29. Miyamoto, A., King, M. W. and Fujii, M. (1989), "Non-linear dynamic analysis and design concepts for RC beams under impulsive loads", Bulletin of the New Zealand National Society for Earthquake Engineering, 22, 98-111.
  30. Mochida, A., Mutsuyoshi, H. and Tsuruta, K. (1987), "Inelastic response of reinforced concrete frame structures subjected to earthquake motion", Concrete Library of JSCE, 10, 125-138.
  31. Shiohara, H. and Kusuhara, F. "Benchmark test for validation of mathematical models for nonlinear and cyclic behaviour of R/C beam-column joints", http://www.rcs.arch.t.utokyo.ac.jp/shiohara/benchmark/.
  32. Sziveri, J., Topping, P. H. V. and Ivanyi, P. (1999), "Parallel transient dynamic non-linear analysis of reinforced concrete plates", Advances Eng. Software, 30, 867-882. https://doi.org/10.1016/S0965-9978(98)00102-1
  33. Tedesco, J. W., Ross, A. C. and Brunair, R. M. (1989), "Numerical analysis of dynamic split cylinder tests", Comput. Struct., 32, 609-624. https://doi.org/10.1016/0045-7949(89)90350-7
  34. Tedesco, J. W., Ross, A. C., McGill, P. B. and O'Neil, B. P. (1991), "Numerical analysis of high strain rate concrete tension tests", Comput. Struct., 40, 313-327. https://doi.org/10.1016/0045-7949(91)90357-R
  35. Tedesco, J. W., Powell, J. C., Ross, A. C. and Hughes, M. L. (1997), "A strain-rate-dependent concrete material model for ADINA", Comput. Struct., 64, 1053-1067. https://doi.org/10.1016/S0045-7949(97)00018-7
  36. Thabet, A. and Haldane, D. (2001), "Three-dimensional numerical simulation of the behaviour of standard concrete test specimens when subjected to impact loading", Comput. Struct., 79, 21-31. https://doi.org/10.1016/S0045-7949(00)00109-7
  37. van Mier, J. G. M. (1986), "Multiaxial strain-softening of concrete", Mater. Struct., RILEM, 19(111), 179-200. https://doi.org/10.1007/BF02472034
  38. van Mier, J. G. M., Shah, S. P., Arnaud, M., Balayssac, J. P., Bassoul, A., Choi, S., Dasenbrock, D., Ferrara, G., French, C., Gobbi, M. E., Karihaloo, B. L., Konig, G., Kotsovos, M. D., Labnz, J., Lange-Kornbakm D., Markeset, G., Pavlovic, M. N., Simsch, G., Thienel, K.-C., Turatsinze, A., Ulmer, M., van Vliet, M. R. A. and Zissopoulos, D. (1997), (TC 148-SSC: Test methods for the strain-softening of concrete), "Strain-softening of concrete in uniaxial compression", Mater. Struct. RILEM, 30(198), 195-20. https://doi.org/10.1007/BF02486177
  39. Willam, K. J. and Warnke, E. P. (1974), "Constitutive model for the triaxial behaviour of concrete", Seminar on Concrete Structures Subjected to Triaxial Stresses, Instituto Sperimentale Modelie Strutture, Bergamo, May, Paper III-1.
  40. Winnicki, A., Pearce, C. J. and Bicanic, N. (2001), "Viscoplasic Hoffman consistency model for concrete", Comput. Struct., 79, 7-19. https://doi.org/10.1016/S0045-7949(00)00110-3

Cited by

  1. Microplane constitutive model M4L for concrete. II: Calibration and validation vol.128, 2013, https://doi.org/10.1016/j.compstruc.2013.06.009
  2. Solution strategy for non-linear finite element analyses of large reinforced concrete structures vol.16, pp.3, 2015, https://doi.org/10.1002/suco.201400088
  3. A simplified finite element model for assessing steel fibre reinforced concrete structural performance vol.173, 2016, https://doi.org/10.1016/j.compstruc.2016.05.017
  4. Investigations on the influence of radial confinement in the impact response of concrete vol.14, pp.6, 2014, https://doi.org/10.12989/cac.2014.14.6.675
  5. Non-linear finite element analyses applicable for the design of large reinforced concrete structures 2017, https://doi.org/10.1080/19648189.2017.1348993
  6. Debonding failure analysis of FRP-retrofitted concrete panel under blast loading vol.38, pp.4, 2008, https://doi.org/10.12989/sem.2011.38.4.479
  7. Behaviour of steel-fibre-reinforced concrete beams under high-rate loading vol.22, pp.3, 2008, https://doi.org/10.12989/cac.2018.22.3.337
  8. Pressure−impulse diagram method - a fundamental review vol.172, pp.2, 2019, https://doi.org/10.1680/jencm.17.00017
  9. Numerically Efficient Three-Dimensional Model for Non-Linear Finite Element Analysis of Reinforced Concrete Structures vol.14, pp.7, 2008, https://doi.org/10.3390/ma14071578