References
- Bazant, Z. P. and Cusatis, G. (2005), "Concrete creep at high temperature and its interaction with fracture: Recent progress", CONCREEP-7, Ed. Pijaudier-Cabot, Gerard & Acker, Hermes Science, 449-460.
- Bazant, Z. P. and Kaplan, M. F. (1996), Concrete at High Temperatures: Material Properties and Mathematical Models, Harlow, Longman.
- Bazant, Z. P. and Thonguthai W. (1978), "Pore pressure and drying concrete at high temperature", ASCE J. Eng. Mech., 104, 1059-1079.
- Belytschko, T., Liu, W. K. and Moran, B. (2001), Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons Ltd.
- Gawin, D., Majorana, C. E. and Schrefler, B. A. (1999), "Numerical analysis of hygro-thermal behavior and damage of concrete at high temperature", Mechanics of Cohesive Frictional Materials, 4, 37-74. https://doi.org/10.1002/(SICI)1099-1484(199901)4:1<37::AID-CFM58>3.0.CO;2-S
- Gawin, D., Pesavento, F. and Schrefler B. A. (2006), "Towards prediction of the thermal spalling risk through a multi phase porous media model of concrete", Comput. Methods Appl. Mech. Eng., 195, 5707-5729. https://doi.org/10.1016/j.cma.2005.10.021
- Harmathy, T. Z. and Allen, L. W. (1973), "Thermal properties of selected masonry unit concretes", J. Amer. Inst., 70, 132-144.
- Khoury, G. A., Grainger, B. N. and Sullivan, P. J. E. (1985), "Transient thermal strain of concrete: literature review, conditions within specimens and behaviour of individual constituents", Mag. Concrete Res., 37(132), 131-144. https://doi.org/10.1680/macr.1985.37.132.131
- Khoury, G. A. (2006), "Strain of heated concrete during two thermal cycles - Parts 1,2 and 3", Mag. Concrete Res., 58(6), 367-385. https://doi.org/10.1680/macr.2006.58.6.367
- Khoury, G. A. (2006), "Strain of heated concrete during two thermal cycles - Parts 1,2 and 3", Mag. Concrete Res., 58(6), 387-400. https://doi.org/10.1680/macr.2006.58.6.387
- Khoury, G. A. (2006), "Strain of heated concrete during two thermal cycles - Parts 1,2 and 3", Mag. Concrete Res., 58(7), 421-435. https://doi.org/10.1680/macr.2006.58.7.421
- Nielsen, C. V., Pearce, C. J. and Biani, N. (2002), "Theoretical model of high temperature effects on uniaxial concrete member under elastic restraint", Mag. Concrete Res., 54(4), 239-249. https://doi.org/10.1680/macr.2002.54.4.239
- Ozbolt, J., Li, Y.-J. and Kozar, I. (2001), "Microplane model for concrete with relaxed kinematic constraint", Int. J. Solids Struct., 38, 2683-2711. https://doi.org/10.1016/S0020-7683(00)00177-3
- Ozbolt, J., Kozar, I., Eligehausen, R. and Periskic, G. (2005), "Three-dimensional FE analysis of headed stud anchors exposed to fire", Comput. Concrete, 2(4), 249-266. https://doi.org/10.12989/cac.2005.2.4.249
- Schneider, U. (1986), Properties of Materials at High Temperatures, Concrete, 2nd. Edition, RILEM Technical Comitee 44-PHT, Technical University of Kassel, Kassel.
- Tenchev, R. T., Li, L. Y. and Purkiss, J. A. (2001), "Finite element analysis of coupled heat and moisture transfer in concrete subjected to fire", Numerical Heat Transfer, 39, 685-710. https://doi.org/10.1080/10407780119853
- Thelandersson, S. (1983), "On the multiaxial behaviour of concrete exposed to high temperature", Nucl. Eng. Design, 75(2), 271-282. https://doi.org/10.1016/0029-5493(83)90023-7
- Therrien, R. and Sudicky, E. A. (1996), "Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media", J. Contaminant Hydrology, 23(1-2), 1-44. https://doi.org/10.1016/0169-7722(95)00088-7
- Wang, K., Jansen, D. C. and Shah, P. S. (1997), "Permeability study of cracked concrete", Cement Concrete Res., 27(3), 381-393. https://doi.org/10.1016/S0008-8846(97)00031-8
- Zhang, B. and Bicanic, N. (2002), "Residual fracture toughness of normal- and high-strength gravel concrete after heating to 600oC", ACI Mater J., 99(3), 217-226.
- Zieml, M., Leithner, D., Lackner, R. and Mang, H. A. (2006), "How do polypropylene fibers improve the spalling behavoiur of in-situ concrete", Cement Concrete Res., 36(5), 929-942. https://doi.org/10.1016/j.cemconres.2005.12.018
Cited by
- Analysis of coupled transport phenomena in concrete at elevated temperatures vol.219, pp.13, 2013, https://doi.org/10.1016/j.amc.2011.02.064
- 3D numerical analysis of reinforced concrete beams exposed to elevated temperature vol.58, 2014, https://doi.org/10.1016/j.engstruct.2012.11.030
- Permeability measurement on high strength concrete without and with polypropylene fibers at elevated temperatures using a new test setup vol.53, 2013, https://doi.org/10.1016/j.cemconres.2013.06.005
- Experimental and numerical study of hygro-thermo-mechanical properties of “Schilfsandstein” from Baden-Württemberg vol.56, pp.3-4, 2008, https://doi.org/10.1007/s00254-008-1467-x
- The virtual penetration laboratory: new developments for projectile penetration in concrete vol.7, pp.2, 2008, https://doi.org/10.12989/cac.2010.7.2.087
- Integration of the microplane constitutive model into the EPIC code vol.7, pp.2, 2008, https://doi.org/10.12989/cac.2010.7.2.145
- Numerical procedures for extreme impulsive loading on high strength concrete structures vol.7, pp.2, 2008, https://doi.org/10.12989/cac.2010.7.2.159
- The high-rate brittle microplane concrete model: Part I: bounding curves and quasi-static fit to material property data vol.9, pp.4, 2008, https://doi.org/10.12989/cac.2012.9.4.293
- Effect of cooling rate on the post-fire behavior of CFST column vol.23, pp.4, 2008, https://doi.org/10.12989/cac.2019.23.4.281
- Impact Analysis of Thermally Pre-Damaged Reinforced Concrete Frames vol.13, pp.23, 2020, https://doi.org/10.3390/ma13235349
- Assessment of the post-fire residual bearing capacity of FRC and hybrid RC-FRC tunnel sections considering thermal spalling vol.54, pp.6, 2021, https://doi.org/10.1617/s11527-021-01819-2