Acknowledgement
Supported by : Austrian Science Fund (FWF)
References
- Acker, P. (2001), "Micromechanical analysis of creep and shrinkage mechanisms", In: Ulm, F.-J., Bazant, Z., Wittmann, F. (Eds.), Concreep 6: Proceedings of the 6th International Conference on Creep, Shrinkage & Durability Mechanics of Concrete and other Quasi-Brittle Materials, Elsevier Science Ltd., Amsterdam, Cambridge, USA, pp. 15-25.
- Acker, P. and Ulm, F.-J. (2001), "Creep and shrinkage of concrete: physical origins and practical measurements", Nucl. Eng. Des. 203, 148-158.
- Athrushi, S. A. (2003), "Tensile and compressive creep of early age concrete: testing and modelling", Ph.D. thesis, The Norwegian University of Science and Technology, Trondheim, Norway.
- Bazant, Z. P. (1979), "Thermodynamics of solidifying or melting viscoelastic material", J. Eng. Mech. (ASCE), 105(6), 933-952.
- Bazant, Z. P. (Ed.), (1988), Mathematical modeling of creep and shrinkage of concrete. Wiley, New York.
- Bazant, Z. P. (1995), "Creep and damage in concrete", In: Skalnet, J., Mindess, S. (Eds.), Materials Science of Concrete. American Ceramic Society, Westerville, OH, pp. 335-389.
- Bazant, Z. P. and Baweja, S. (1997), "Creep and shrinkage prediction model for analysis and design of concrete structures: model B3". In: Al-Manaseer, A. (Ed.), SP-194: The Adam Neville Symposium: Creep and Shrinkage-Structural Design Eects, American Conrete Institue (ACI), Farmington Hills, MI, pp. 1-83.
- Bazant, Z. P., Hauggard, A. B., Baweja, S. and Ulm, F.-J. (1997), "Microprestress solidication theory for concrete creep, part I: Aging and drying effects. J. Eng. Mech. (ASCE), 123(11), 1188-1194. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1188)
- Bentz, D. P. (1997), "Three-dimensional computer simulation of Portland cement hydration and microstructure development", J. American Ceramic Society 80(1), 3-21, see also http://ciks.cbt.nist.gov/garbocz/AmCeram/. https://doi.org/10.1111/j.1151-2916.1997.tb02785.x
- Bernard, O., Ulm, F.-J. and Lemarchand, E. (2003), "A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials", Cement Concrete Res., 33, 1293-1309. https://doi.org/10.1016/S0008-8846(03)00039-5
- Beurthey, S. and Zaoui, A. (2000), "Structural morphology and relaxation spectra of viscoelastic heterogenous materials", European J. Mech. A/Solids, 19, 1-16. https://doi.org/10.1016/S0997-7538(00)00157-1
- Bye, G. C. (1999), Portland Cement, 2nd Edition. Thomas Telford Publishing, London.
- Cervera, M., Oliver, J. and Prato, T. (1999), "Thermo-chemo-mechanical model for concrete. II: damage and creep", J. Eng. Mech. (ASCE), 125(9), 1028-1039. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:9(1028)
- Cook, R. A., Hover, K. C. (1999), "Mercury porosimetry of hardened cement paste", Cement Concrete Res. 29, 993-943.
- Cusatic, G. and Cedolin, L. (2007), "Two-scale study of concrete fracturing behavior", Eng. Fract. Mech., 74(1-2), 3-17. https://doi.org/10.1016/j.engfracmech.2006.01.021
- Diamond, S. (2004), "The microstructure of cement paste and concrete - a visual primer", Cement Concrete Compo., 26(8), 919-933. https://doi.org/10.1016/j.cemconcomp.2004.02.028
- Diamond, S. and Leeman, M. E. (1995), "Pore size distribution in hardened cement paste by SEM image analysis", In: Diamond, S., Mindess, S., Glasser, F., Roberts, L., Skalny, J., Wakely, L. (Eds.), Microstructure of Cement-Based Systems/Bonding and Interfaces in Cementitious Materials. Vol. 370. Materials Research Society, Pittsburgh, pp. 217-226.
- Eshelby, J. D. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proceedings of the Royal Society of London A 241, 376-396. https://doi.org/10.1098/rspa.1957.0133
- Fussl, J., Lackner, R., Eberhardsteiner, J. and Mang, H. A. (2008), "Failure modes and effective strength of two-phase materials determined by means of numerical limit analysis", Acta Mech., 195(1-4), 185-202. https://doi.org/10.1007/s00707-007-0550-9
- Gawin, D., Pesavento, F. and Schrefler, B. A. (2006), "Hygro-thermo-chemo-mechanical modelling of concrete at early age and beyond. Part II: Shrinkage and creep of concrete", Int. J. Numer. Methods Eng., 67, 332-363. https://doi.org/10.1002/nme.1636
- Gawin, D., Pesavento, F. and Schrefler, B. A. (2007), "Modelling creep and shrinkage of concrete by means of effective stresses", Mater. Struct., 40, 579-591. https://doi.org/10.1617/s11527-006-9165-1
- Grondin, F., Dumontet, H., Ben Hamida, A., Mounajed, G. and Boussa, H. (2007), "Multiscales modelling for the behaviour of damaged concrete", Cement Concrete Res., 37(10), 1453-1462. https://doi.org/10.1016/j.cemconres.2007.05.012
- Hershey, A. V. (1954), "The elasticity of an isotropic aggregate of anisotropic cubic crystals". J. Appl. Mech. (ASME), 21, 236-240.
- Hua, C., Acker, P. and Ehrlacher, A. (1995), "Analyses and models of the autogenous shrinkage of hardening cement paste I. Modelling at macroscopic scale", Cement Concrete Res. 25, 1457-1468. https://doi.org/10.1016/0008-8846(95)00140-8
- Hummel, A., Wesche, K., Brand, W., Rusch, H., Kordina, K. and Hilsdorf, H. (1962), "Versuche uber das Kriechen unbewehrten Betons [creep tests on plain concrete]", Tech. Rep. 146, Deutscher Ausschuss fur Stahlbeton, Berlin, in German.
- Jehng, J.-Y., Sprague, D. T. and Halperin, W. P. (1996) "Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing", Magnetic Resonance Imaging, 14, 785-791. https://doi.org/10.1016/S0730-725X(96)00164-6
- Jennings, H. M. (2000), "A model for the microstructure of calcium silicate hydrate in cement paste", Cement Concrete Res., 30, 101-116. https://doi.org/10.1016/S0008-8846(99)00209-4
- Jennings, H. M. (2004), "Colloid model of C-S-H and implications to the problem of creep and shrinkage", Mater. Struct., 37, 59-70. https://doi.org/10.1007/BF02481627
- Koenders, E. A. B. and van Breugel, K. (1997). "Numerical modelling of autogenous shrinkage of hardening cement paste", Cement Concrete Res., 27(10), 1489-1499. https://doi.org/10.1016/S0008-8846(97)00170-1
- Kroener, E. (1958), "Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls [Computation of the elastic constants of a polycrystal based on the constants of the single crystal]", Zeitschrift fur Physik 151, 504-518, in German. https://doi.org/10.1007/BF01337948
- Lackner, R., Macht, J. and Mang, H. A. (2002), "Projekt zur Erstellung eines Programmsystems zur praktischen Umsetzung eines hybriden Verfahrens zur Bestimmung der Beanspruchung von Tunnelschalen aus Spritzbeton [Project for the development of a program system for the practical realization of a hybrid method for determination of the loading of shotcrete tunnel shells]", Tech. rep., Vienna University of Technology, Vienna, in German.
- Laplante, P. (1993), "Proprietes mecaniques des betons durcissants: analyse comparee des betons classiques et a tres hautes performances [Mechanical properties of hardening concrete: a comparative analysis of ordinary and high performance concretes]", Ph.D. thesis, Ecole Nationale des Ponts et Chaussees, Paris, France, in French.
- Laws, N. and McLaughlin, R. E. (1978), "Self-consistent estimates for the viscoelastic creep compliance of composite materials", Proceedings of the Royal Society of London A, 359, 251-273. https://doi.org/10.1098/rspa.1978.0041
- Lee, E. H. (1955), "Stress analysis in visco-elastic bodies", Quarterly of Applied Mathematics 13, 183-190.
- Lura, P., Jensen, O. M. and van Breugel, K. (2003), "Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanism", Cement Concrete Res., 33, 223-232. https://doi.org/10.1016/S0008-8846(02)00890-6
- Mandel, J. (1966), Mecanique des milieux continus [Continuum mechanics]. Gauthier, Paris, in French.
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Nabarro, F. R. N. (2001) "Creep mechanism in crystalline solids", Encyclopedia of Materials: Science and Technology, 1788-1795.
- Neubauer, C. M. and Jennings, H. M. (2000), "The use of digital images to determine deformation throughout a microstructure. Part II: Application to cement paste", J. Mater. Sci., 35, 5751-5765. https://doi.org/10.1023/A:1004835830352
- Pichler, C. (2007), "Multiscale characterization and modeling of creep and autogenous shrinkage of early-age cement-based materials", Ph.D. thesis, Vienna University of Technology, Vienna, Austria.
- Pichler, C. and Lackner, R. (2008), Identication of logarithmic-type creep of calcium-silicate-hydrates by means of nanoindentation. Strain. In print.
- Pichler, C., Lackner, R. and Mang, H. A. (2007), "A multiscale micromechanics model for the autogenousshrinkage deformation of early-age cement-based materials". Eng. Fract. Mech., 74, 34-58. https://doi.org/10.1016/j.engfracmech.2006.01.034
- Pichler, C., Lackner, R. and Ulm, F.-J. (2008), "Scaling relations for viscoelastic-cohesive conical indentation". Int. J. Mater. Res. 99, 836-846. https://doi.org/10.3139/146.101707
- Ruetz, W. (1966), Das Kriechen des Zementsteins im Beton und seine Beeinflussung durch gleichzeitiges Schwinden [Creep of cement in concrete and the influence of simultaneous shrinkage on this type of creep]. Deutscher Ausschuss fur Stahlbeton, Heft 183, In German.
- Sanahuja, J., Dormieux, L. and Chanvillard, G. (2007), "Modelling elasticity of a hardening cement paste", Cement Concrete Res., 37, 1427-1439. https://doi.org/10.1016/j.cemconres.2007.07.003
- Sercombe, J., Hellmich, C., Ulm, F.-J., Mang, H. A. (2000), "Modeling of early-age creep of shotcrete. I: model and model parameters", J. Eng. Mech. (ASCE), 126(3), 284-291. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(284)
- Stehfest, H., 1970. Algorithm 368: Numerical inversion of Laplace transforms. Communications of the ACM, 13, 47-49. https://doi.org/10.1145/361953.361969
- Stora, E., He, Q.-C. and Bary, B. (2006), "Influence of inclusion shapes on the effective linear elastic properties of hardened cement pastes", Cement Concrete Res., 36(7), 1330-1344. https://doi.org/10.1016/j.cemconres.2006.02.007
- Suquet, P. (Ed.) (1997), Continuum micromechanics. Springer, Vienna.
- Taylor, H. F. W. (1997), Cement chemistry, 2nd Edition. Thomas Telford Publishing, London.
- Tennis, P. D. and Jennings, H. M. (2000), "A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes", Cement Concrete Res., 30, 855-863. https://doi.org/10.1016/S0008-8846(00)00257-X
- Thomas, J. J. and Jennings, H. M. (2006), "A colloidal interpretation of chemical aging of C-S-H gel and and its effects on the properties of cement paste", Cement Concrete Res., 36, 30-38. https://doi.org/10.1016/j.cemconres.2004.10.022
- Ulm, F.-J. (1998), "Couplages thermochemomecaniques dans les betons : un premier bilan. [Thermochemomechanical couplings in concretes: a first review]", Tech. rep., Laboratoires des Ponts et Chaussees, Paris, France, In French.
- Ulm, F.-J. and Coussy, O. (1995), "Modeling of thermochemomechanical couplings of concrete at early ages", J. Eng. Mech. (ASCE), 121(7), 785-794.
- Ulm, F.-J. and Coussy, O. (1996), "Strength growth as chemo-plastic hardening in early age concrete", J. Eng. Mech. (ASCE), 122(12), 1123-1132. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:12(1123)
- Ulm, F.-J., Le Maou, F. and Boulay, C. (1999), "Creep and shrinkage couplings: new review of some evidence", Revue Francaise de Genie Civil. Ed. Hermes, 3, 21-37.
- Wittmann, F. H. (1982), "Creep and shrinkage mechanisms", In: Bazant, Z. P., Wittmann, F. H. (Eds.), Creep and shrinkage in concrete structures. Wiley, Chichester, pp. 129-161.
- Zaoui, A. (1997), "Structural morphology and constitutive behaviour of microheterogenous materials", In: Suquet, P. (Ed.), Continuum micromechanics. Springer, Vienna.
- Zohdi, T. I. (2004), "Homogenization methods and multiscale modeling: linear problems", In: Stein, E., de Borst, R., Hughes, T. (Eds.), Encyclopedia of Computational Mechanics, Wiley, Chichester.
Cited by
- Linear and Non-linear Creep models for a multi-layered concrete composite vol.13, pp.4, 2013, https://doi.org/10.1016/j.acme.2013.04.002
- Microstructural Modeling of Early-Age Creep in Hydrating Cement Paste vol.142, pp.11, 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001144
- A proposed model for creep in mass concrete under variable ambient conditions vol.19, pp.sup2, 2015, https://doi.org/10.1179/1432891714Z.0000000001069
- Micromechanics-based multifield framework for early-age concrete vol.47, 2013, https://doi.org/10.1016/j.engstruct.2012.08.015
- The simulation of inelastic matrix strains in cementitious materials using micromechanical solutions vol.133, 2015, https://doi.org/10.1016/j.engfracmech.2014.10.010
- Elastic and creep properties of young cement paste, as determined from hourly repeated minute-long quasi-static tests vol.82, 2016, https://doi.org/10.1016/j.cemconres.2015.11.007
- Identification of viscoelastic C-S-H behavior in mature cement paste by FFT-based homogenization method vol.40, pp.2, 2010, https://doi.org/10.1016/j.cemconres.2009.10.003
- Mechanical and micromechanical properties of alkali activated fly-ash cement based on nano-indentation vol.107, 2016, https://doi.org/10.1016/j.conbuildmat.2015.12.013
- Degree of hydration based prediction of early age basic creep and creep recovery of blended concrete vol.48, 2014, https://doi.org/10.1016/j.cemconcomp.2013.10.012
- Nanoindentation characteristics of alkali-activated aluminosilicate materials vol.33, pp.2, 2011, https://doi.org/10.1016/j.cemconcomp.2010.10.005
- A micromechanics based constitutive model for fibre reinforced cementitious composites vol.110-111, 2017, https://doi.org/10.1016/j.ijsolstr.2017.01.032
- Creep of concrete at variable stresses and heating vol.16, pp.6, 2015, https://doi.org/10.12989/cac.2015.16.6.897
- Microstructural effects in the simulation of creep of concrete vol.105, 2018, https://doi.org/10.1016/j.cemconres.2017.12.001
- Predictive modelling of hydration and mechanical performance of low Ca composite cements: Possibilities and limitations from industrial perspective vol.100, 2017, https://doi.org/10.1016/j.cemconres.2017.05.020
- Strain-rate sensitivity of cement paste by microindentation continuous stiffness measurement: Implication to isotache approach for creep modeling vol.100, 2017, https://doi.org/10.1016/j.cemconres.2017.05.023
- Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics vol.65, 2017, https://doi.org/10.1016/j.euromechsol.2017.02.008
- Modelling creep of high strength concrete vol.7, pp.6, 2008, https://doi.org/10.12989/cac.2010.7.6.533
- Water Redistribution-Microdiffusion in Cement Paste under Mechanical Loading Evidenced by 1H NMR vol.123, pp.26, 2008, https://doi.org/10.1021/acs.jpcc.9b02436
- Creep and Shrinkage Modeling of Concrete Using Solidification Theory vol.32, pp.7, 2008, https://doi.org/10.1061/(asce)mt.1943-5533.0003256
- Confronting a refined multiscale estimate for the aging basic creep of concrete with a comprehensive experimental database vol.136, pp.None, 2008, https://doi.org/10.1016/j.cemconres.2020.106163
- Entwicklung der Kriech‐ und Schwindmodelle für Betontragwerke in Österreich und Deutschland – Bewertung der Modelle hinsichtlich der Sensitivität einzelner Eingangsparameter vol.116, pp.11, 2008, https://doi.org/10.1002/best.202100075
- A multiscale model for predicting the coefficient of thermal expansion of concrete vol.11, pp.11, 2008, https://doi.org/10.1063/5.0071677