Acknowledgement
Supported by : Agence Nationale de la Recherche
References
- Choinska, M., Khelidj, A., Chatzigeorgiou, G. and Pijaudier-Cabot, G. (2007), "Effects and interaction of temperature and stress level related damage on permeability of concrete", Cement Concrete Res., 37, 79-88. https://doi.org/10.1016/j.cemconres.2006.09.015
- Comi, C., Mariani, S. and Perego, U. (2007), "An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation", Int. J. Numer. Anal. Meth. Geomech., 31(2), 213-238. https://doi.org/10.1002/nag.537
- Geers, M. G. D., de Borst, R., Brekelmans, W. A. M. and Peerlings, R. H. J. (1998), "Strain-based transientgradient damage model for failure analyses", Comput. Methods Appl. Mech. Eng., 160, 133-153. https://doi.org/10.1016/S0045-7825(98)80011-X
- Hearn N. and Lok G. (1998), "Measurement of permeability under uniaxial compression-A test method", ACI Mater. J., 95, 691-694.
- Hillerborg, A., Modeer, M. and Pertersson, P. E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
- Jason, L., Ghavamian, S., Pijaudier-Cabot, G. and Huerta, A. (2004) "Benchmarks for the validation of a non local damage model", Revue Francaise de Genie Civil, 8, pp. 303-328. https://doi.org/10.1080/12795119.2004.9692608
- Jirasek, M., Rosholven, S. and Grassl, P. (2004), "Size effect on fracture energy induced by nonlocality", Int. J. Num. Anal. Meth. Geomech., 28, 653-670. https://doi.org/10.1002/nag.364
- Larsson, R., Steinman, P. and Runesson, K. (1998), "Finite element embedded localization band for finite strain plasticity based on a regularized strong discontinuity", Mech. Cohe.-Frict. Mater., 4, 171-194.
- Legrain, G., Dufour, F., Huerta, A. and Pijaudier-Cabot, G. (2007), "Extraction of crack opening from a non local damage field", Proceedings of IX International Conference on Computational Plasticity, 1, 462-465, Barcelona, Spain.
- Mazars, J. and Pijaudier-Cabot, G. (1989), "Continuum damage theory: application to concrete", J. Eng. Mech., 115, 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
- Mazars, J. and Pijaudier-Cabot, G. (1996), "From damage to fracture mechanics and conversely: a combined approach", Int. J. Solids Struct., 33, 3327-3342. https://doi.org/10.1016/0020-7683(96)00015-7
- Oliver, J., Huespe, A. E., Pulido, M. D. G. and Chaves, E. W. V. (2002), "From continuum mechanics to fracture mechanics: the strong discontinuity approach", Eng. Fract. Mech., 69, 113-136. https://doi.org/10.1016/S0013-7944(01)00060-1
- Peerlings, R. H. J., de Borst, R., Brekelmans, W. A. M. and de Vree, J. H. P. (1996), "Gradient enhanced damage for quasibrittle materials", Int. J. Numer. Meth. Eng., 39, 3391-3403. https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
- Peerlings, R. H. J., Geers, M. G. D., de Borst, R. and Brekelmans (2001), "A critical comparison of non local and gradient enhanced softening continua", Int. J. Solid, Struct., 38, 7723-7746. https://doi.org/10.1016/S0020-7683(01)00087-7
- Pijaudier-Cabot, G. and Bazant, Z. (1987), "Nonlocal damage theory", J. Eng. Mech., 113, 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
- Planas, J., Elices, M. and Guinea, G. V. (1993), "Cohesive cracks versus nonlocal models: Closing the gap", Int. J. Fracture., 63, 173-187. https://doi.org/10.1007/BF00017284
- Simo, J. C., Oliver, J. and Armero, F. (1993), "An analysis of strong discontinuities induced by strain softening in rate-independent inelastic solids", Comput. Mech., 12, 277-296. https://doi.org/10.1007/BF00372173
- Simone, A., Wells, G. N. and Sluys, L. J. (2003), "From continuous to discontinuous failure in a gradient enhanced continuum damage model", Comput. Methods. Appl. Mech. Eng., 192(41-42), 4581-4607. https://doi.org/10.1016/S0045-7825(03)00428-6
- Simone, A., Askes, H. and Sluys, L. J. (2004), "Incorrect initiation and propagation of failure in non-local and gradient-enhanced media", Int. J. Solids Struct. 41, 351-363. https://doi.org/10.1016/j.ijsolstr.2003.09.020
- Sugiyama, T., Bremner, T. W. and Holm, T. A. (1996), "Effect of stress on gas permeability in concrete", ACI Mater. J., 93, 443-450.
Cited by
- Bond slip model for the simulation of reinforced concrete structures vol.39, 2012, https://doi.org/10.1016/j.engstruct.2012.02.007
- Crack opening estimate in reinforced concrete walls using a steel–concrete bond model vol.16, pp.3, 2016, https://doi.org/10.1016/j.acme.2016.02.001
- Mechanical damage, chemical damage and permeability in quasi-brittle cementitious materials vol.13, pp.7-8, 2009, https://doi.org/10.1080/19648189.2009.9693163
- Stress-based nonlocal damage model vol.48, pp.25-26, 2011, https://doi.org/10.1016/j.ijsolstr.2011.08.012
- A step-by-step global crack-tracking approach in E-FEM simulations of quasi-brittle materials vol.170, 2017, https://doi.org/10.1016/j.engfracmech.2016.11.032
- Estimation of crack opening from a two-dimensional continuum-based finite element computation vol.36, pp.16, 2012, https://doi.org/10.1002/nag.1097
- A review of non local continuum damage: Modelling of failure? vol.9, pp.4, 2014, https://doi.org/10.3934/nhm.2014.9.575
- A mesoscopic model for a better understanding of the transition from diffuse damage to localized damage vol.14, pp.6-7, 2010, https://doi.org/10.1080/19648189.2010.9693261
- Interaction-based non-local damage model for failure in quasi-brittle materials vol.54, 2013, https://doi.org/10.1016/j.mechrescom.2013.09.011
- An original semi-discrete approach to assess gas conductivity of concrete structures vol.41, pp.6, 2017, https://doi.org/10.1002/nag.2655
- A computational model for failure analysis of fibre reinforced concrete with discrete treatment of fibres vol.77, pp.4, 2010, https://doi.org/10.1016/j.engfracmech.2009.11.014
- A practical method to estimate crack openings in concrete structures 2010, https://doi.org/10.1002/nag.876
- Crack-path field and strain-injection techniques in computational modeling of propagating material failure vol.274, 2014, https://doi.org/10.1016/j.cma.2014.01.008
- A medial-axis-based model for propagating cracks in a regularised bulk vol.101, pp.7, 2015, https://doi.org/10.1002/nme.4757
- Crack width analysis of reinforced concrete under direct tension by finite element method and crack queuing algorithm vol.126, 2016, https://doi.org/10.1016/j.engstruct.2016.08.027
- Monitoring size effect on crack opening in concrete by digital image correlation vol.16, pp.7, 2012, https://doi.org/10.1080/19648189.2012.672211
- Cracking analysis of reinforced concrete structures vol.18, pp.7, 2014, https://doi.org/10.1080/19648189.2014.881756
- Modelling of three-dimensional crack patterns in deep reinforced concrete structures vol.83, 2015, https://doi.org/10.1016/j.engstruct.2014.10.040
- A damage to crack transition model accounting for stress triaxiality formulated in a hybrid nonlocal implicit discontinuous Galerkin-cohesive band model framework vol.113, pp.3, 2018, https://doi.org/10.1002/nme.5618
- A nonlocal damage model for plain concrete consistent with cohesive fracture vol.207, pp.2, 2017, https://doi.org/10.1007/s10704-017-0225-z
- Topological search of the crack pattern from a continuum mechanical computation vol.99, 2015, https://doi.org/10.1016/j.engstruct.2015.05.005
- Non local damage model vol.14, pp.6-7, 2010, https://doi.org/10.1080/19648189.2010.9693260
- Effect of fibres on early age cracking of concrete tunnel lining. Part II: Numerical simulations vol.59, 2016, https://doi.org/10.1016/j.tust.2016.08.001
- Non-intrusive global/local analysis for the study of fine cracking vol.37, pp.8, 2013, https://doi.org/10.1002/nag.2155
- A cohesive zone model which is energetically equivalent to a gradient-enhanced coupled damage-plasticity model vol.29, pp.6, 2010, https://doi.org/10.1016/j.euromechsol.2009.11.003
- Finite element crack width computations with a thermo-hygro-mechanical-hydration model for concrete structures vol.18, pp.7, 2014, https://doi.org/10.1080/19648189.2014.896755
- Elastic damage to crack transition in a coupled non-local implicit discontinuous Galerkin/extrinsic cohesive law framework vol.279, 2014, https://doi.org/10.1016/j.cma.2014.06.031
- Numerical strategies for prediction of drying cracks in heterogeneous materials: Comparison upon experimental results vol.33, pp.3, 2011, https://doi.org/10.1016/j.engstruct.2010.12.013
- An optimization-based phase-field method for continuous-discontinuous crack propagation vol.116, pp.1, 2018, https://doi.org/10.1002/nme.5911
- Stress resultant model for ultimate load design of reinforced-concrete frames: combined axial force and bending moment vol.7, pp.4, 2008, https://doi.org/10.12989/cac.2010.7.4.303
- Importance of a rigorous evaluation of the cracking moment in RC beams and slabs vol.9, pp.4, 2008, https://doi.org/10.12989/cac.2012.9.4.275
- New continuous strain‐based description of concrete's damage‐permeability coupling vol.42, pp.14, 2018, https://doi.org/10.1002/nag.2808