DOI QR코드

DOI QR Code

Cohesive modeling of dynamic fracture in reinforced concrete

  • Yu, Rena C. (ETSI de Caminos, C.y P., Universidad de Castilla-La Mancha) ;
  • Zhang, Xiaoxin (ETSI de Caminos, C.y P., Universidad de Castilla-La Mancha) ;
  • Ruiz, Gonzalo (ETSI de Caminos, C.y P., Universidad de Castilla-La Mancha)
  • Received : 2007.11.01
  • Accepted : 2008.01.01
  • Published : 2008.08.25

Abstract

In this work we simulate explicitly the dynamic fracture propagation in reinforced concrete beams. In particular, adopting cohesive theories of fracture with the direct simulation of fracture and fragmentation, we represent the concrete matrix, the steel re-bars and the interface between the two materials explicitly. Therefore the crack nucleation within the concrete matrix, through and along the re-bars, the deterioration of the concrete-steel interface are modeled explicitly. The numerical simulations are validated against experiments of three-point-bend beams loaded dynamically under various strain rates. By extracting the crack-tip positions and the crack mouth opening displacement history, a two-stage crack propagation, marked by the attainment of the peak load, is observed. The first stage corresponds to the stable crack advance, the second one, the unstable collapse of the beam.

Keywords

Acknowledgement

Supported by : Direccion, on General de Investigacion

References

  1. Ben Romdhane, M. R. and Ulm, D. R. (2002), "Computational mechanics of the steel-concrete interface", Int. J. Numer. Anal. Meth. Geomech. 26, 99-120. https://doi.org/10.1002/nag.158
  2. Bosco, C. and Carpinteri, A. (1992), "Fracture behaviour of beam cracked across reinforcement", Theort. Appl. Fract. Mech. 17, 61-68. https://doi.org/10.1016/0167-8442(92)90046-Z
  3. Brincker, R., Henriksen, M. S., Christensen, F. A. and Heshe, G. (1999), Size effects on the bending behaviour of reinforced concrete beams., pp 127-180, Elsevier, London.
  4. Camacho, G. T. and Ortiz, M. (1996), "Computational modelling of impact damage in brittle materials", Int. J. Solids Structs. 33(20-22), 2899-2938. https://doi.org/10.1016/0020-7683(95)00255-3
  5. De Andres, A., Perez, J. L., and Ortiz, M. (1999), "Elastoplastic finite-element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading", Int. J. Solids Structs. 36(15), 2231-2258. https://doi.org/10.1016/S0020-7683(98)00059-6
  6. Harsh, S., Shen, Z. J. and Darwin, D. (1990), "Strain-rate sensitive behavior of cement paste and mortar in compression", ACI Mater. J. 87(6), 508-516.
  7. Hawkins, N. M. and Hjorsetet, K. (1992), Minimum Reinforcement Requirement for Concrete Exural Members., pp 379-412, Elsevier, London.
  8. Hawkins, N. M. and Hjorsetet, K. (2004), Bond of RC Members Using Nonlinear 3D FE Analysis, pp 861-868, IA-FraMCoS.
  9. Hededal, O. and Kroon, I. B. (1991), "Lightly reinforced high-strength concrete", M. Sc. Thesis, University of Aalborg, Denmark.
  10. Ortiz, M. and Pandolfi, A. (1999), "Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis", Int. J. Numer Meth. Eng. 44, 1267-1282. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
  11. Pandolfi, A. and Ortiz, M. (2002), "An efficient adaptive procedure for three-dimensional fragmentation simulations", Eng. Comput 18(2), 148-159. https://doi.org/10.1007/s003660200013
  12. Planas, J., Guinea, G. and Elices, M. (1992), "Stiffness associated with quasi-concentrated load", Mater. Structs. 27, 311-318.
  13. Rossi, P. and Toulemonde, E. (1996), "Effect of loading rate on the tensile behavior of concrete:description of the physical mechanisms", Mater. Structs. 29(186), 116-118. https://doi.org/10.1007/BF02486201
  14. Ruiz, G. (2001), "Propagation of a cohesive crack crossing a reinforcement layer", Int. J. Fract. 111, 265-282. https://doi.org/10.1023/A:1012260410704
  15. Ruiz, G., Carmona, J. R. and Cedon, D. A. (2006), "Local fracture and steel-concrete decohesion phe nomena studied by means of cohesive interface elements", Comput Methods Appl. Mech. Eng. 195, 7237-7248. https://doi.org/10.1016/j.cma.2005.01.029
  16. Ruiz, G., Elices, M. and Planas, J. (1999), "Size effect and bond-slip dependence of lightly reinforced concrete beams", Minimum Reinforcement in Concrete Beams, ESIS Publications, 24, 67-98. https://doi.org/10.1016/S1566-1369(99)80062-4
  17. Ruiz, G., Ortiz, M. and Pandolfi, A. (2000), "Three-dimensional nite-element simulation of the dynamic Brazilian tests on concrete cylinders", Int. J. Numer Meth. Eng. 48, 963-994. https://doi.org/10.1002/(SICI)1097-0207(20000710)48:7<963::AID-NME908>3.0.CO;2-X
  18. Ruiz, G., Pandolfi, A. and Ortiz, M. (2001), "Three-dimensional cohesive modeling of dynamic mixed-mode fracture", Int. J. Num. Meth. Eng. 52, 97-120. https://doi.org/10.1002/nme.273
  19. Ruiz, G., Zhang, X. X., Del Viso, J. R., Yu, R. C. and Carmona, J. R. (2008), "Loading rate effect on the fracture behavior of high strength concrete", Cement Concrete Res., submitted.
  20. Yu, R. C. and Ruiz, G. (2006), "Explicit finite element modeling of static crack propagation in reinforced concrete", Int. J. Fracture 141, 357-372. https://doi.org/10.1007/s10704-006-9002-0
  21. Yu, R. C., Ruiz, G. and Pandolfi, A. (2004), "Numerical investigation on the dynamic behavior of advanced ceramics", Eng. Fract. Mech. 71, 897-911. https://doi.org/10.1016/S0013-7944(03)00016-X
  22. Zhang, X. X., Ruiz, G. and Yu, R. C. (2008), "Experimental study of combined size and strain rate and size effects on the fracture of reinforced concrete", J. Mater. Civ. Eng., accepted.

Cited by

  1. An adaptive stochastic multi-scale method for cohesive fracture modelling of quasi-brittle heterogeneous materials under uniaxial tension vol.163, 2016, https://doi.org/10.1016/j.engfracmech.2016.02.040
  2. Dynamic fracture behaviour in fibre-reinforced cementitious composites vol.93, 2016, https://doi.org/10.1016/j.jmps.2015.12.025
  3. A loading rate dependent cohesive model for concrete fracture vol.82, 2012, https://doi.org/10.1016/j.engfracmech.2011.12.013
  4. Loading rate effect on crack velocities in steel fiber-reinforced concrete vol.76, 2015, https://doi.org/10.1016/j.ijimpeng.2014.09.004
  5. Finite-element study of the diagonal-tension failure in reinforced concrete beams vol.169, pp.2, 2011, https://doi.org/10.1007/s10704-011-9592-z
  6. Effect of loading rate on crack velocities in HSC vol.37, pp.4, 2010, https://doi.org/10.1016/j.ijimpeng.2009.10.002
  7. An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete vol.58, pp.4, 2016, https://doi.org/10.1007/s00466-016-1309-8
  8. Some aspects of load-rate sensitivity in visco-elastic microplane material model vol.7, pp.4, 2008, https://doi.org/10.12989/cac.2010.7.4.317
  9. Meshfree modeling of the dynamic mixed-mode fracture in FRC through an eigensoftening approach vol.172, pp.None, 2008, https://doi.org/10.1016/j.engstruct.2018.06.010
  10. The continuous-discontinuous Galerkin method applied to crack propagation vol.23, pp.4, 2008, https://doi.org/10.12989/cac.2019.23.4.235
  11. Propagation Speed of Dynamic Mode-I Cracks in Self-Compacting Steel Fiber-Reinforced Concrete vol.13, pp.18, 2020, https://doi.org/10.3390/ma13184053
  12. Effects of loading rates on concrete compressive strength vol.1144, pp.1, 2008, https://doi.org/10.1088/1757-899x/1144/1/012033