DOI QR코드

DOI QR Code

Laser Ablated Carbon Thin Film from Carbon Nanotubes and Their Property Studies

  • Sharon, Maheshwar (Nanotechnology Research Center, Birla College) ;
  • Rusop, M. (Dept. of Environmental Technology and Urban Planning, Nagoya Institute of Technology) ;
  • Soga, T. (Dept. of Environmental Technology and Urban Planning, Nagoya Institute of Technology) ;
  • Afre, Rakesh A. (Dept. of Environmental Technology and Urban Planning, Nagoya Institute of Technology)
  • Received : 2007.12.04
  • Accepted : 2008.03.10
  • Published : 2008.03.30

Abstract

A carbon nanotube (CNT) of diameter ~20 nm has been synthesized by spray pyrolysis of turpentine oil using Ni/Fe catalyst. Pellet of CNTs has been used as a target to produce semiconducting carbon thin film of band gap 1.4 eV. Presence of oxygen pressure in the pulse laser deposition (PLD) chamber helped to control the $sp^3/sp^2$ ratio to achieve the desired band gap. Results are discussed with the help of Raman spectra, SEM TEM micrographs and optical measurements suggest that semiconducting carbon thin film deposited by PLD technique has retained its nanotubes structure except that its diameter has increased from 20 nm to 150 nm.

Keywords

References

  1. Sharon M.; Jain S.; Kichambre P.D.; Mukul K., Mater. Chem. and Phys 1998, 56, 284. https://doi.org/10.1016/S0254-0584(98)00180-1
  2. Sharon M.; Sundarakoteeswaran N.; Kichambre P.D.; Mukul K.; Ando Y.; Zhao X. Dia. and Relat. Mater 1999, 8, 485. https://doi.org/10.1016/S0925-9635(98)00289-1
  3. Sharon M.; Mukhopadhyay I.; Mukhopadhyay K. Sol. Ener. Mate. and Sol. Cells 1997, 45, 35. https://doi.org/10.1016/S0927-0248(96)00029-3
  4. Krishna K.M.; Soga T.; Mukhopadhyay K.; Sharon M.; Umeno M. Sol. Ener. Mater. Sol. Cells 1997, 48, 23.
  5. Mukhopadhyay K.; Mukhopadhyay I.; Sharon M.; Soga T.; and Umeno M. Carbon 1997, 35, 863. https://doi.org/10.1016/S0008-6223(97)80177-7
  6. Afre R. A.; Soga T.; Jimbo T.; Mukul K.; Ando Y. and Sharon M.; Somani P.R.; Umeno M. Micro. Mespo. Mate. 2006, 96 (1-3), 184. https://doi.org/10.1016/j.micromeso.2006.06.036
  7. Scaife D. E. Solar Energy 1980, 25(1), 41. https://doi.org/10.1016/0038-092X(80)90405-3
  8. Ferrari A.C. and Robertson J. Phys. Rev. B 2000, 61, 14095. https://doi.org/10.1103/PhysRevB.61.14095
  9. Yoshitake T.; Nagano A.; Itakura M.; Kuwano N.; Hara T.; and Nagayama K. Jpn. J. Appl. Phys. 2007, 46 (38), L936. https://doi.org/10.1143/JJAP.46.L936

Cited by

  1. Standardization Trends for Carbon Nanotubes vol.10, pp.1, 2009, https://doi.org/10.5714/CL.2009.10.1.001
  2. Evaluating the Degree of Macrodispersion of Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy vol.10, pp.1, 2009, https://doi.org/10.5714/CL.2009.10.1.014
  3. Relative Content Evaluation of Single-walled Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy vol.10, pp.1, 2009, https://doi.org/10.5714/CL.2009.10.1.009