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Abstract. In this paper, we give some fixed point theorems for multivalued maps satis-

fying an implicit relation on metrically convex spaces. Our results extend and generalize

some fixed point theorem in the literature.

1. Introduction

In recent years several fixed point results have been obtained on metrically con-
vex spaces. Assad and Kirk [6] gave a sufficient condition enunciating fixed point
of set-valued mappings enjoying specific boundary condition in metrically convex
metric spaces. A significant generalization of the fixed point theorem of Assad [5]
and the theorem of Assad and Kirk [6] for multivalued contraction non-self map-
pings is obtained by Itoh [17] in 1977. In the current years the work due to Assad
and Kirk [6] has inspired extensive activities which includes Ahmad and Imdad [1],
[2], Imdad et al. [13], Imdad and Ali [14], Itoh [17], Khan [19] and some others.
Most recently, Dhage et al. [9] and Huang and Cho [12] proved some fixed point
theorems for a sequence of set-valued mappings which generalize several results due
to Ahmad and Khan [3], Itoh [17], Khan [19] and others. The purpose of this pa-
per is to prove some coincidence and common fixed point theorems for multivalued
mappings satisfying an implicit relation on metrically convex spaces. Our results
either partially or completely generalize earlier results due to Ahmad and Imdad
[1], [2], Ahmad and Khan [3], Ćirić [7], Imdad and Khan [15], Itoh [17], Khan [19],
Khan et al. [20], Rhoades [26] and several others. See also the related Theorem 3.1
of [14].
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2. Preliminaries

Let (X, d) be a metric space. Then X said to be metrically convex if for every
pair x, y ∈ X, x 6= y, there is a point z ∈ X such that d(x, y) = d(x, z) + d(z, y).

Lemma 1([6]). Let K be non-empty and closed subset of a metrically convex met-
ric space X. Then for any x ∈ K and y /∈ K, there exists a point z ∈ δK such that
d(x, y) = d(x, z) + d(z, y), where δK denotes the boundary of K.

Let CB(X) denotes the family of all non-empty closed and bounded subsets of
X. Denote for A,B ∈ CB(X)

d(x, A) = inf{d(x, a) : a ∈ A}

and
H(A,B) = max{sup

x∈A
d(x,B), sup

y∈B
d(y, A)}.

The function H is a metric on CB(X) and is called Hausdorff metric. It is well
known that if X is a complete metric space, then so is the metric space (CB(X),H).

Lemma 2([21]). Let A,B ∈ CB(X) and a ∈ A, then for any positive number
q < 1 there exists b = b(a) in B such that qd(a, b) ≤ H(A,B).

Definition 1([15]). Let K be a nonempty subset of a metric space (X, d), T :
K → X and F : K → CB(X). The pair (F, T ) is said to be pointwise R-weakly
commuting on K if for given x ∈ K and Tx ∈ K, there exists some R = R(x) > 0
such that d(Ty, FTx) ≤ Rd(Tx, Fx) for each y ∈ K ∩ Fx.

Moreover, the pair (F, T ) will be called R-weakly commuting on K if d(Ty, FTx) ≤
Rd(Tx, Fx) holds for each x ∈ K, Tx ∈ K with some R > 0.

If R = 1, we get the definition of weak commutativity of (F, T ) on K due to
Hadzic and Gajic [11]. For K = X Definition 1 reduces to “pointwise R-weak
commutativity and R-weak commutativity” for single valued self mappings due to
Pant [22].

Definition 2([10],[11]). Let K be a nonempty subset of a metric space (X, d), T :
K → X and F : K → CB(X). The pair (F, T ) is said to be weakly commuting
if for every x, y ∈ K with x ∈ Fy and Ty ∈ K, we have d(Tx, FTy) ≤ d(Ty, Fy),
whereas the pair (F, T ) is said to be compatible if for every sequence {xn} ⊂ K,
from the relation limn→∞ d(Fxn, Txn) = 0 and Txn ∈ K (for every n ∈ N) it
follows that limn→∞ d(Tyn, FTxn) = 0 for every sequence {yn} ⊂ K such that
yn ∈ Fxn, n ∈ N .

For hybrid pairs of self type mappings these definitions were introduced by
Kaneko and Sessa [18].

Definition 3([13]). Let K be a nonempty subset of a metric space (X, d), T :
K → X and F : K → CB(X). The pair (F, T ) is said to be quasi-coincidentally
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commuting if for all coincidence points “x” of (T, F ), TFx ⊂ FTx whenever Fx ⊂
K and Tx ∈ K for all x ∈ K.

Definition 4([13]). A mapping T : K → X is said to be coincidentally idempotent
w.r.t mapping F : K → CB(X), if T is idempotent at the coincidence points of the
pair (F, T ).

3. Implicit relation

Implicit relations on metric space have been used in many articles (see [4], [16],
[23], [24], [25], [27]).

Let R+ denote the set of all non-negative real numbers and let G be the set of
all continuous functions G : R5

+ → R satisfying the following conditions:
(G1) : G(t1, · · · , t5) is non-decreasing in t1 and non-increasing in t2, · · · , t5.

(G2) : there exist three constants a, b ≥ 0, 2a + 3b < q < 1 such that the
inequality

G(u, v, w, v, v + w) ≤ 0

implies u ≤ max{(a + b)v + bw, (a + b)w + bv}.
(G3) : G(qu, u, 0, 0, 2u) > 0, ∀u > 0.

Now we give some examples. In the following examples, the condition (G1) is
obvious.

Example 1. Let G(t1, · · · , t5) = t1−α max{ t2
2

, t3, t4}−βt5, where α, β ≥ 0, α > 2β

and 2α + 3β < q < 1.

Let G(u, v, w, v, v + w) = u−α max{w, v}−β(w + v) ≤ 0. Thus u ≤ max{(α +
β)v + βw, (α + β)w + βv} and so (G2) is satisfied with a = α and b = β.

G(qu, u, 0, 0, 2u) = u(q − α

2
− 2β) > 0,∀u > 0.

Therefore G ∈ G.

Example 2. Let G(t1, · · · , t5) = t1 − αt2 − β(t3 + t4)− γt5, where α, β, γ ≥ 0 and
2α + 3β + 3γ < q < 1.

Let G(u, v, w, v, v + w) = u−αv− β(w + v)− γ(w + v) ≤ 0. Thus u ≤ (α + β +
γ)v + (β + γ)w ≤ max{(α + β + γ)v + (β + γ)w, (α + β + γ)w + (β + γ)v} and so
(G2) is satisfied with a = α, b = β + γ.

G(qu, u, 0, 0, 2u) = u(q − α− 2γ),∀u > 0.

Therefore G ∈ G.

Example 3. Let G(t1, · · · , t5) = t1 − αt2 − β max{t3 + t4, t5} , where α, β, γ ≥ 0
and 2α + 3β < q < 1.

Let G(u, v, w, v, v + w) = u − αv − β(v + w) ≤ 0. Thus u ≤ (α + β)v + βw ≤
max{(α + β)v + βw, (α + β)w + βv} and so (G2) is satisfied with a = α, b = β.

G(qu, u, 0, 0, 2u) = u(q − α− 2β),∀u > 0.

Therefore G ∈ G.
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Example 4. Let G(t1, · · · , t5) = t1 − αt2 − β max{t3, t4} − γt5, where α, β, γ ≥ 0
and 2α + 3β + 3γ < q < 1.

Let G(u, v, w, v, v + w) = u − αv − β max{w, v} − γ(w + v) ≤ 0. Thus u ≤
max{(α+β +γ)v +(β +γ)w, (α+β +γ)w +(β +γ)v} and so (G2) is satisfied with
a = α, b = β + γ

G(qu, u, 0, 0, 2u) = u(q − α− 2γ) > 0,∀u > 0.
Therefore G ∈ G.

Example 5. Let G(t1, · · · , t5) = t1 −max
{

αt3t5
t3 + t5 + 1

,
βt4t5

t4 + t5 + 1

}
− γ(t3 + t4),

where α, β, γ ≥ 0, 2α + 2β + 3γ < q < 1.

Let G(u, v, w, v, v + w) = u −max
{

αv(v + w)
v + 2w + 1

,
βw(v + w)
2v + w + 1

}
− γ(v + w) ≤ 0.

Thus

u ≤ max
{

αv(v + w)
v + 2w + 1

,
βw(v + w)
2v + w + 1

}
+ γ(v + w)

≤ max {αv, βw}+ γ(v + w)
= max {(α + γ)v + γw, (β + γ)w + γv}
≤ max {(α + β + γ)v + γw, (α + β + γ)w + γv}

and so (G2) is satisfied with a = α + β, b = γ.
G(qu, u, 0, 0, 2u) = qu > 0,∀u > 0.
Therefore G ∈ G.

4. Main result

Now we give our main theorem.

Theorem 1. Let (X, d) be a metrically convex complete metric space and K a
non-empty closed subset of X. Let {Fn}∞n=1 : K → CB(X) and S, T : K → X
satisfying

(a) δK ⊆ SK ∩ TK, Fi(K) ∩K ⊆ SK,Fj(K) ∩K ⊆ TK ,
(b) Tx ∈ δK ⇒ Fi(x) ⊆ K, Sx ∈ δK ⇒ Fj(x) ⊆ K, and

(4.1)
G (H(Fi(x), Fj(y)), d(Tx, Sy), d(Tx, Fi(x)), d(Sy, Fj(y)),

d(Tx, Fj(y)) + d(Sy, Fi(x))) ≤ 0

for all x, y ∈ K, where G ∈ G, i = 2n− 1, j = 2n, (n ∈ N),
(c) (Fi, T ) and (Fj , S) are compatible pairs,
(d) {Fn}, S and T are continuous on K.
Then (Fi, T ) as well as (Fj , S) has a point of coincidence.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the following
way.

Let x ∈ δK. Then (due to δK ⊆ TK) there exists a point x0 ∈ K such that
x = Tx0. From the implication Tx ∈ δK which implies F1(x0) ⊆ F1(K)∩K ⊆ SK,
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let x1 ∈ K be such that y1 = Sx1 ∈ F1(x0) ⊆ K. Since y1 ∈ F1(x0), there exists a
point y2 ∈ F2(x1) such that

qd(y1, y2) ≤ H(F1(x0), F2(x1)).

Suppose y2 ∈ K. Then y2 ∈ F2(K) ∩ K ⊆ TK implies that there exists a point
x2 ∈ K such that y2 = Tx2. Otherwise, if y2 /∈ K, then there exists a point p ∈ δK
such that

d(Sx1, p) + d(p, y2) = d(Sx1, y2).

Since p ∈ δK ⊆ TK, there exists a point x2 ∈ K with p = Tx2 so that

d(Sx1, Tx2) + d(Tx2, y2) = d(Sx1, y2).

y3 ∈ F3(x2) be such that qd(y2, y3) ≤ H(F2(x1), F3(x2)).
Thus, repeating the foregoing arguments, we obtain two sequences {xn} and

{yn} such that
(e) y2n ∈ F2n(x2n−1), y2n+1 ∈ F2n+1(x2n),
(f) y2n ∈ K ⇒ y2n = Tx2n or y2n /∈ K ⇒ Tx2n ∈ δK and

d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n),

(g) y2n+1 ∈ K ⇒ y2n+1 = Sx2n+1 or y2n+1 /∈ K ⇒ Sx2n+1 ∈ δK and

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1).

We denote
P0 = {Tx2i ∈ {Tx2n} : Tx2i = y2i}
P1 = {Tx2i ∈ {Tx2n} : Tx2i 6= y2i}
Q0 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 = y2i+1}
Q1 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 6= y2i+1}.

One can note that (Tx2n, Sx2n+1) /∈ P1 ×Q1 and (Sx2n−1, Tx2n) /∈ Q1 × P1.
Now we distinguish the following three cases.

Case 1. If (Tx2n, Sx2n+1) ∈ P0 ×Q0, then using (4.1), we have

G (H(F2n+1(x2n), F2n(x2n−1)), d(Tx2n, Sx2n−1), d(Tx2n, F2n+1(x2n)),
d(Sx2n−1, F2n(x2n−1)), d(Tx2n, F2n(x2n−1)) + d(Sx2n−1, F2n+1(x2n))) ≤ 0

or

G (H(F2n+1(x2n), F2n(x2n−1)), d(y2n, y2n−1), d(y2n, y2n+1), d(y2n−1, y2n),
d(y2n−1, y2n) + d(y2n, y2n+1)) ≤ 0.

From (G2), there exist three constants a, b ≥ 0, 2a + 3b < q < 1 such that

H(F2n+1(x2n), F2n(x2n−1))(4.2)

≤ max
{

(a + b)d(y2n−1, y2n) + bd(y2n, y2n+1),
(a + b)d(y2n, y2n+1) + bd(y2n−1, y2n) .
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Since

qd(y2n, y2n+1) = qd(Tx2n, Sx2n+1)
≤ H(F2n+1(x2n), F2n(x2n−1)),

from (4.2), we have

d(y2n, y2n+1) ≤ max
{

a + b

q − b
,

b

q − a− b

}
d(y2n−1, y2n)

or

d(Tx2n, Sx2n+1) ≤ max
{

a + b

q − b
,

b

q − a− b

}
d(Sx2n−1, Tx2n).

Note that max
{

a + b

q − b
,

b

q − a− b

}
< 1 since 2a + 3b < q < 1.

Similarly if (Sx2n−1, Tx2n) ∈ P0 ×Q1, then

d(Sx2n−1, Tx2n) ≤ max
{

a + b

q − b
,

b

q − a− b

}
d(Sx2n−1, Tx2n−2).

Case 2. If (Tx2n, Sx2n+1) ∈ P0 ×Q1, then

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1)

which in turn yields

d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n+1) = d(y2n, y2n+1)

and hence

qd(Tx2n, Sx2n+1) ≤ qd(y2n, y2n+1) ≤ H(F2n+1(x2n), F2n(x2n−1)).

Now, proceeding as in Case 1, we have

d(Tx2n, Sx2n+1) ≤ max
{

a + b

q − b
,

b

q − a− b

}
d(Sx2n−1, Tx2n).

In case (Sx2n−1, Tx2n) ∈ Q1 × P0, then as earlier, one also obtains

d(Sx2n−1, Tx2n) ≤ max
{

a + b

q − b
,

b

q − a− b

}
d(Sx2n−1, Tx2n−2).

Case 3. If (Tx2n, Sx2n+1) ∈ P1 ×Q0, then Sx2n−1 = y2n−1 and

qd(Tx2n, Sx2n+1) = qd(Tx2n, y2n+1)(4.3)
≤ qd(Tx2n, y2n) + qd(y2n, y2n+1)
≤ qd(Tx2n, y2n) + H(F2n+1(x2n), F2n(x2n−1)).
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Now again using (4.1), we have

G (H(F2n+1(x2n), F2n(x2n−1)), d(Tx2n, Sx2n−1), d(Tx2n, F2n+1(x2n)),
d(Sx2n−1, F2n(x2n−1)), d(Tx2n, F2n(x2n−1)) + d(Sx2n−1, F2n+1(x2n))) ≤ 0

or
G (H(F2n+1(x2n), F2n(x2n−1)), d(y2n, y2n−1), d(y2n, y2n+1),

d(y2n−1, y2n), d(y2n−1, y2n) + d(y2n, y2n+1)) ≤ 0.

From (G2),

H(F2n+1(x2n), F2n(x2n−1))(4.4)

≤ max
{

(a + b)d(y2n−1, y2n) + bd(y2n, y2n+1),
(a + b)d(y2n, y2n+1) + bd(y2n−1, y2n) .

From (4.3) and (4.4), we have

d(Tx2n, Sx2n+1) ≤ max
{

q + b

q − a− b
,
q + a + b

q − b

}
d(Tx2n, Sx2n−1).

Now, proceeding as earlier, one also obtains

d(Sx2n−1, Tx2n) ≤ max
{

a + b

q − b
,

b

q − a− b

}
d(Sx2n−1, Tx2n−2).

Therefore combining above inequalities, we have

d(Tx2n, Sx2n+1) ≤ kd(Sx2n−1, Tx2n−2),

where

(4.5) k = max


(

a + b

q − b

) (
q + b

q − a− b

)
,

(
a + b

q − b

) (
q + a + b

q − b

)
,(

b

q − a− b

) (
q + b

q − a− b

)
,

(
b

q − a− b

) (
q + a + b

q − b

)
 < 1

since 2a + 3b < q < 1.
To see (4.5), 2a + 3b < q < 1 yields

a + b < q − a− 2b
⇒ aq + bq < q2 − aq − 2bq
⇒ aq + bq + ab + b2 < q2 − aq − 2bq + ab + b2

⇒ (a + b)(q + b) < (q − b)(q − a− b)

⇒ (a + b)(q + b)
(q − b)(q − a− b)

< 1
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and
3b < q

⇒ q

q − b
<

3
2

⇒ q

2(q − b)
+

1
4

< 1

⇒ 1
2
(

q

(q − b)
+

1
2
) < 1

⇒ a + b

q − b
(

q

q − b
+

a + b

q − b
) < 1

⇒ (a + b)(q + a + b)
(q − b)2

< 1

and
b < q − 2a− 2b

⇒ bq < q2 − 2aq − 2bq
⇒ bq + b2 < q2 − 2aq − 2bq + b2 + a2 + 2ab
⇒ b(q + b) < (q − a− b)2

⇒ b(q + b)
(q − a− b)2

< 1

and
a + 3b < q

⇒ aq + 3bq < q2

⇒ bq < q2 − aq − 2bq
⇒ bq + ab + b2 < q2 − aq − 2bq + ab + b2

⇒ b(q + a + b) < (q − a− b)(q − b)

⇒ b(q + a + b)
(q − a− b)(q − b)

< 1.

Thus in all the cases, we have

d(Tx2n, Sx2n+1) ≤ k max{d(Sx2n−1, Tx2n), d(Tx2n−2, Sx2n−1)}

whereas

d(Sx2n+1, Tx2n+2) ≤ k max{d(Sx2n−1, Tx2n), d(Tx2n, Sx2n+1)}.

Now on the lines of Assad and Kirk [6], it can be shown by induction that for n ≥ 1,
we have

d(Tx2n, Sx2n+1) < knδ, d(Sx2n+1, Tx2n+2) < kn+ 1
2 δ

whereas
δ = k−

1
2 max{d(Tx0, Sx1), d(Sx1, Tx2)}.

Thus the sequence {Tx0, Sx1, Tx2, Sx3, · · · , Sx2n−1, Tx2n, Sx2n+1, · · · } is Cauchy
and hence converges to the point z in X. Then as noted in [10] there exists at least
one subsequence {Tx2nk

} or {Sx2nk+1} which is contained in P0 or Q0 respectively.
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Suppose that the subsequence {Tx2nk
} contained in P0 for each k ∈ N converges

to z. Using compatibility of (Fj , S), we have

lim
k→∞

d(Sx2nk−1, Fj(x2nk−1)) = 0 for any even integer j ∈ N,

which implies that limk→∞ d(STx2nk
, Fj(Sx2nk−1)) = 0.

Using the continuity of S and Fj , one obtains Sz ∈ Fj(z), for any even integer
j ∈ N . Similarly continuity of T and Fi implies Tz ∈ Fi(z), for any odd integer
i ∈ N . Now using (4.1), we have

G (H(Fi(z), Fj(z)), d(Tz, Sz), d(Tz, Fi(z)), d(Sz, Fj(z)),
d(Tz, Fj(z)) + d(Sz, Fi(z))) ≤ 0

or, since qd(Tz, Sz) ≤ H(Fi(z), Fj(z)),

G(qd(Tz, Sz), d(Tz, Sz), 0, 0, 2d(Tz, Sz)) ≤ 0

which is a contradiction with (G3) if d(Tz, Sz) > 0. Thus we obtain d(Tz, Sz) = 0
and so Tz = Sz which shows that z is a common coincidence point of the maps
{Fn}, S and T . �

Remark 1. By Theorem 1, we get an improved version of main theorem of [4].

Remark 2. Theorem 3.1 of [15], which is a generalization of results of [1], [2],
follows from Example 1 and Theorem 1.

Remark 3. Theorem 1 can prove for pointwise R-weakly commuting maps as
Theorem 3.4 of [15].

Theorem 2. Let (X, d) be a metrically convex complete metric space and K a non-
empty closed subset of X. Let {Fn}∞n=1 : K → CB(X) and S, T : K → X satisfying
(4.1), (a) and (b). Suppose that

(h) TK and SK are closed subspaces of X. Then (Fi, T ) has a point of coinci-
dence and (Fj , S) has a point of coincidence.

Moreover, (Fi, T ) has a common fixed point if T is quasi-coincidentally com-
muting and coincidentally idempotent w.r.t. Fi whereas (Fj , S) has a common fixed
point provided S is quasi-coincidentally commuting and coincidentally idempotent
w.r.t. Fj.

Remark 4. Theorem 3.5 of [15], which is a generalization of results of Khan [19]
and Khan et al. [20], follows from Example 1 and Theorem 2.

Theorem 3. Let (X, d) be a metrically convex complete metric space and K a
non-empty closed subset of X. Let {Fn}∞n=1 : K → CB(X) satisfying

(i) x ∈ δK ⇒ Fn(x) ⊆ K and

G (H(Fi(x), Fj(y)), d(x, y), d(x, Fi(x)), d(y, Fj(y)), d(x, Fj(y)) + d(y, Fi(x))) ≤ 0
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for all x, y ∈ K, where G ∈ G, i 6= j,
Then {Fn} has a common fixed point.

Remark 5. Corollary 3.6 of [15], which is a generalization of results of [8], follows
from Example 1 and Theorem 3.

Remark 6. If we combined Example 5 with Theorem 3, we have the following
interesting result.

Corollary 1. Let (X, d) be a metrically convex complete metric space and K a
non-empty closed subset of X. Let {Fn}∞n=1 : K → CB(X) satisfying

(j) x ∈ δK ⇒ Fn(x) ⊆ K and

H(Fi(x), Fj(y)) ≤ max


αd(x, Fi(x)) [d(x, Fj(y)) + d(y, Fi(x))]

d(x, Fi(x)) + d(x, Fj(y)) + d(y, Fi(x)) + 1
,

βd(x, Fi(x)) [d(x, Fj(y)) + d(y, Fi(x))]
d(y, Fj(y)) + d(x, Fj(y)) + d(y, Fi(x)) + 1


+γ [d(x, Fi(x)) + d(y, Fj(y))]

for all x, y ∈ K, where α, β, γ ≥ 0, 2α + 2β + 3γ < q < 1, i 6= j.
Then {Fn} has a common fixed point.

Remark 7. We can have some new results, if we combined Theorem 1, Theorem
2 or Theorem 3 with some examples of G.
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