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Abstract. A one site chemotherapy agent-diffusion model is proposed which accounts for

diffusion of chemotherapy agent, normal and cancer cells. It is shown that, by controlling

the initial conditions, consequently an initial dose of the chemotherapy agent, the system

is guaranteed to evolute towards a target equilibrium state. Or, growth of the normal cells

occurs against decay of the cancer cells. Effects of diffusion of chemotherapy-agent and

cells are investigated through numerical computations of the concentrations in square and

triangular cancer sites.

1. Introduction

It is known in cancer treatment that when a chemotherapy is injected into
the body, the effective agent attack the cancer as well as the normal cells. One
of the objectives of the research in chemotherapy is to synthesize an agent which
maximizes the effect on cancer cells but minimizes side effects [1]. Mathematical
and computer modeling may be deterministic in this area. Different computer and
optimization models have been proposed [2], [3]. Mathematical models accounting
for dynamical treatment have been recently proposed in [4], [5], [6].

A two-site-model with metastasis had been very recently proposed in [7].
Spreading of cancer from one site to an another one had been treated. The proposed
model is described by a set of differential equations that admit a large number of
possible equilibrium states. In the one site model with chemical treatment, numer-
ous equilibrium points also exist. In fact this number depends on the dimension
of the space of parameters which ,for example,is twelve for the one site model. An
important point to illustrate is select appropriate initial conditions so that a tar-
get equilibrium state is attained. That is for a specific equilibrium state we search
if there exist initial conditions in <6 ( or in <3) for two (one) sites model where
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the solution evolutes asymptotically towards this state.The objective beyond this
is that how to control (select) an initial dose-value in order that the concentration
of the normal cells grows and that one of the cancer cells decays. Furthermore the
effect of diffusivity is investigated.

2. The one site-diffusion model

The model proposed here is based on the main equations proposed in [7] but ac-
counts for the diffusion of chemotherapy agent and migration of, normal and cancer
cells. It is more appropriate in cases of leukemia [8]. In what follows u and v are the
concentrations of the normal and cancer cells while w designates the concentration
of the chemotherapy agent. Thus the model is given, by accounting for diffusion,as

(2.1) ut = D1uxx + α1u(1− u

k1
)− q1uv − p1uw

a1 + u

(2.2) vt = D2vxx + α2v(1− v

k2
)− q2uv − p2vw

a2 + v

(2.3) wt = D3wxx +4− (ξ +
c1u

a1 + u
+

c2v

a2 + v
)w in Ω = (−∞,∞)× (0, T )

In the equation (2.1–2.3) the indices 1 and 2 correspond to the normal and
cancer cells respectively, αi are the generation rates of cells, ki are the carrying ca-
pacities, qi are the competitions coefficients between u and v, pi are the predation
coefficients of w on u and v, ai designate the speeds at which u and v reach the
carrying capacities in the absence of competitions and predation, ci are the com-
bination rates of the chemotherapy agent, ∆ is the continuous infusion rate of the
chemotherapy agent while ξ is the washout rate.
In (2.1–2.3) Di, i = 1, 2, 3 are the diffusion coefficients of the normal, cancer (cells)
and of the chemotherapy agent respectively.
This model is subjected to some conditions on the relevant parameters. As, it is
well known that cancer cells grow much faster than the normal cells so that we take
α2 À α1. Also, it is assumed that the chemotherapy is more destructive on cancer
than on normal cells so that p1 << p2.

3. Initial dose control

Here, we consider the homogeneous model which is obtained by setting Di = 0
in the equations (2.1–2.3) to get

(3.1) ut = α1u(1− u

k1
)− q1uv − p1uw

a1 + u

(3.2) vt = α2v(1− v

k2
)− q2uv − p2vw

a2 + v
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(3.3) wt = 4− (ξ +
c1u

a1 + u
+

c2v

a2 + v
)w

We remark that this system is a three-components system. In which the number of
possible equilibrium states may be less or equal eight ones. But here for realistic
values, we confine ourselves to the case where u ≥ 0 and v ≥ 0. We aim here
to predict initial conditions in order that the system evolutes towards a target
equilibrium state. In chemotherapy cancer treatment, the objective is to attain a
steady state where cancer cells are destructed completely and the number of normal
ones is maximized. Here, we show that an appropriate choice of the initial conditions
guarantees a specific equilibrium state to hold. We proceed by the following theorem
concerning the two-component system that is when w = 0 in (3.1–3.3)

Theorem 3.1. If S = (ue, ve) is an equilibrium state which is a stable node for the
two-component system, and P = (uo, vo) is an initial condition such that u̇(0) > 0
and v̇(0) < 0 then S holds for uo < ue and vo > ve.

We sketch a proof to this theorem. As S is an equilibrium point then it holds
for at least one initial values (uo, vo) which may satisfy the different permutations.

(a) uo > ue, vo > ve, (b)uo < ue, vo < ve, (c)uo > ue, vo < ve, and (d)uo <
ue, vo > ve.

In any of the above four cases the assumption u̇(0) > 0 and v̇(0) < 0 is used.
For simplicity it is shown diagrammatically (in figures 1a, b, c and d) that the cases
(i) − (iii) hold if S is a stable (unstable)spiral while the fourth one holds if S is a
stable node.

In figure 1, the boundary curves (nullclines) between different regions are taken
as straight lines for simplicity.

u

v
S

PHuo,voL

u =0

v =0

u >0,v >0

u >0,v <0

u <0,v <0

u <0,v >0

HaL

u

v
SPHuo,voL

u =0

v =0

u <0,v >0

u <0,v <0

u >0,v <0

u >0,v >0

HbL

u

v
PHuo,voL

u =0

v =0

u >0,v <0

u >0,v >0

u <0,v >0

u <0,v <0

HcL

u

v

S

PHuo,voL

u =0

v =0

u <0, v >0

u <0, v <0

u >0, v <0

u >0, v >0

HdL



398 H. I. Abdel-Gawad and K. M. Saad

Figures 1 a, b, c and d. Illustrations of the different cases mentioned in Theorem
(3.1). (a) Case of uo > ue and vo > ve. (b) Case of uo < ue and vo < ve. (c) Case
of uo > ue and vo < ve (d) Case of uo < ue and vo > ve. (ue, ve) is the conditions
of the point S.

Now,we apply theorem 3.1 to the set of equations (3.1–3.3). We proceed to
this by determining the equilibrium states and show that they are stable nodes.
The equilibrium states are viewed in the w = we plane, where we is obtained after
setting the RHS of (3.3) equal zero and we get

(3.4) we =
∆

ξ + c1ue

a1+ue
+

c2ve

a2 + ve

By substituting from we from (3.4) into (3.1) and (3.2), we find that the equilibrium
points satisfy the equations

(3.5) ue(α1(1− ue

k1
)− q1ve − p1∆

(ξ(a1 + ue) + c1us + c2ve(a1+ue)
a2+ve

)
) = 0

(3.6) ve(α2(1− ue

k2
)− q2ue − p2∆

(ξ(a2 + ve) + c2ve + c1ue(a2+ve)
a2+ue

)
) = 0

The equations (3.5) and (3.6) are solved for ve in terms of ue as

(3.7) ve =
−B1 ±

√
B2

1 − 4A1C1

2A1
or ue = 0,

(3.8) ve =
−B2 ±

√
B2

2 − 4A2C2

2A2
or ve = 0,

A1 = λk1q1, B1 = (ue − k1)α1λ + k1(∆p1 + µq1),(3.9)
C1 = a2(ueα1µ + k1(∆p1a2 − µα1))

A2 = λα2, B2 = (µα2 + λk2(ueq2 − α2)),(3.10)
C2 = k2(∆(ue + a1)p2 + µα2(ueq2 − α2))

where λ = (a1 +ue)(ξ +c2 +c1)), µ = a2(ξ(a1 +ue)+ c1ue). The results (3.7–3.10)
are displayed for a class of possible numerical data where they can be classified in
figures 2 and 3. After these figures, we find that the equilibrium states are only
stable nodes. After theorem and these figures, the following corollary holds.
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Figure 2. The equilibrium states for the parameter values α1 = 1.5, α2 = 10, k1 =
1460, k2 = 2100, q1 = 0.0075, q2 = 0.005, p1 = 0.0008, p2 = 0.08, a1 = 1, a2 = 1, c1 =
0.0024, c2 = 0.24, ∆ = 2000; ζ = 20. The target equilibrium state in this case is
S1 = (1459, 0, 0). (black circles) The other equilibrium states.
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Figure 3. The equilibrium states for the parameter values α1 = 13, α2 = 37, k1 =
125, k2 = 167, q1 = 0.0084, q2 = 0.08, p1 = 0.0058, p2 = 18, a1 = 20, a2 = 801, c1 =
0.001, c2 = 36, ∆ = 50000; ζ = 50. The target equilibrium state in this case is
S1 = (122.5, 26.9, 0). (black circles) The other equilibrium states.

Corollary 3.2. If the initial conditions (uo, vo, wo) are taken such that u̇(0) > 0
and v̇(0) < 0 then the system (3.1–3.3) attains the sss given by (ue, ve, we) where
ue > uo, ve < vo. Further we > wo (orwe < wo) if ẇ(0) > 0 (orẇ(0) < 0).

Finally it remains to determine the initial dose wo which guarantees that u̇ > 0
and v̇ < 0. By solving these inequalities , we get

(3.11) w1(uo, vo) < wo < w2(uo, vo)

In (3.11) by omitting the subscript ”o” and averaging over the domain uo < u < us,
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vs < v < vo, we get

w̄1 =
1

(ue − uo)(vo − ve)

∫ vo

ve

∫ ue

uo

w1(u, v)dudv < wo <(3.12)

<
1

(ue − uo)(vo − ve)

∫ vo

ve

∫ ue

uo

w2(u, v)dudv = w̄2

In the inequality (3.12) the values of w̄1 and w̄2 can be calculated for the data given
in figures 2 and 3, and initial conditions are taken in the region where u̇ > 0 and
v̇ < 0. These results are given by;

In Figure 2, if the initial values (u0, v0) are taken as (1100, 0.5) then we find
that 56.2322 < w0 < 279291.

In figure 3 if u0 = 100 and v0 = 2 then, we find that 0 < w0 < 486848 .

4. Solution of the diffusion-model

In the previous section, we analyzed the solution of the homogeneous model
for the aim of inspecting the cases where chemotherapy of cancer treatment is
effective. This was done through examining the initial conditions (u0, v0, w0) which
guarantee equilibrium value for v to be ve = 0. Now, we analyze the solution of
the equations (2.1-2.3)in the open rectangle Ω = (0, T )× (−M, M)in the xt-plane.
As a qualitative behavior to the solution of these equations,we mention that in the
absence of nonlinear terms ,the normal and cancer cells diffuse in space and they
grow in time while the concentration of the chemotherapy agent decays with time.
By taking into consideration of the nonlinear terms and if they can balance the
linear ones locally (that is if there exists a region Ω̄ ⊂ Ω where their contribution
can balance that of the linear terms) then solutions stop growing (damping) with
time. They start to propagate in space leading the onset of traveling waves at variant
speeds.For great time values, permanent traveling waves PTW are generated that
travel at a constant speed.

Here, we confine ourselves to take the initial conditions for the concentration
of normal and cancer cells namely u(x, 0) and v(x, 0) to satisfy the conditions of
theorem . That is, by taking the values (uo, vo) = (infx u(x, 0), supx v(x, 0)) satisfy
ut(uo, vo) > 0 and vt(uo, vo) < 0 for D1 = D2 = 0 in (2.1) and (2.2).Together with
the following inequalities , namely supx(v(x, 0)) << supx(u(x, 0)), supx(u(x, 0)) >>
1 and supx(w(x, 0)) >> 1 (in free units). Consequently, we shall have v(x, t) <<
u(x, t), u(x, t) >> 1 and w(x, t) >> 1 everywhere in Ω.

We derive approximate analytic solutions for (2.1–2.3)in the form of a rational
function. We state that rational function approximations of solutions of PDE are
currently appearing in the literature [13], [14].

The dynamics a reaction-diffusion system suggest that the system evolutes from
the initial conditions towards an equilibrium point, passing probably by the travel-
ing wave solution as a transient solution. By bearing this in mind we construct a
rational function approximation to (2.1–2.3)in the following steps:
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I: Inspecting a target equilibrium state, (us, vs, ws) after the equations (3.1-3.3)
in view of the initial conditions.

II: The equations (2.1–2.3) are divided by (u − ue)2 = ū2, (v − ve)2 = v̄2 and
(w − we)2 = w̄2 respectively and to get

(4.1)
ut

ū2
= U,

vt

v̄2
= V,

wt

w̄2
= W,

where U, V and W are the right hand sides of (2.1–2.3) divided by ū2, v̄2 and w̄2

respectively.

III: By integrating (4.1) formally,

we have for the first equation;

(4.2) u(x, t) = ue +
(u(x, 0)−ue)

1− (u(x, 0−ue)
∫ t

0
Udt1

(4.3) U =
(D1uxx + α1u(1− u

k1
)− q1uv − p1uw

a1+u )
ū2

Similar equations hold for v and w. We note that the function U under the
integral in (4.2) depends implicitly on t1.

IV: In analogy to the fixed point iteration,we construct an iterative scheme after
the formal solution given by (4.2-4.3)) as

(4.4) u(n) = ue +
(u(x, 0)− ue)

1− (u(x, 0)− ue)
∫ t

0
U(u(n−1), v(n−1), w(n−1))dt1

, n ≥ 1.

A similar iterative scheme is constructed for v(n),and w(n).
For n = 0, we take ū(0) , v̄(0) and w(0) satisfy the diffusion equations

(4.5) u
(0)
t = D1u

(0)
xx , v

(0)
t = D2v

(0)
xx , w

(0)
t = D3w

(0)
xx .

In applications, the solution given by (4.4) and (4.5) is truncated at the first, second
or higher approximations.

Now, we prove that the sequences of solutions
{
u(n)

}
,
{
v(n)

}
and

{
w(n)

}
con-

verges uniformly to the exact solution of (2.1).

Theorem 4.1. If u(x, 0), v(x, 0) and w(x, 0) are piece-wise smooth functions then
the above sequences of solutions converge uniformly on in any compact domain in
Ω.

Proof. The assumption on the initial conditions is taken as in case of solution of the



402 H. I. Abdel-Gawad and K. M. Saad

linear diffusion equation. A proof that this condition holds also for the solution of
the equation ut = uxx +f(u) to exist had been carried out in [16](see also [12], [15]).
This condition holds here as the iteration is based on the solution of the equations
in (4.5).The convergence is proved in the maximum norm.
We consider the sequence

{
u(n)

}
where for n=1,

(4.6) u(1) = ue +
(u(0) − ue)

1− (u(0) − ue)
∫ t

0
U (0)dt1

(4.7) U (0) =
α1u

(0)
[
(1− u(0)

k1
)− q1v

(0) − p1w(0)

a1+u(0)

]

(u(0) − ue)2

In the equations (4.6) and (4.7) we have u(0)(x, t) < ue for t ≥ to . By bearing
in mind that we are working in the domain where the terms the square brackets are
positive (ut > 0), then the denominator in the RHS of (4.6) is strictly positive for
T > t ≥ to > 0.Consequently we have

(4.8) |u(1) − u(o)| < (u(0) − ue)2|
∫ t

0

U (0)dt1|

In Ω × D, where D is an open parallelepiped in the uvw space, the function
U (0) is differentiable there.By applying the mean value theorem for multi-variables
on U (0) and the boundedness of u(o), we get

(4.9) |u(1) − u(o)| < K1t

Now, as u(0), the solution of the first equation in (4.2), belongs to the space
S∞; the space of infinitely differentiable and rapidly decreasing functions for large
x, we have

(4.10) |u(1)
xx − u(o)

xx | < M1t

Similar equations hold for the variables vandw. By induction, we can prove that

(4.11) |u(n) − u(n−1)| < Kntn/n!, |u(n)
xx − u(n−1)

xx | < Mntn/n!

By taking K = MaxKi,M = MaxMi and by using the identity

(4.12) un − u = uo − u +
i=n∑

i=1

(ui − ui−1)

we have

(4.13) |u(n) − u| < Ktn/n! ≤ KTn
o /n! < ε1, n > N1, To < T
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(4.14) |u(n)
xx − uxx| < Mtn/n! ≤ MTn

o /n! < ε2, n > N2

Consequently the sequence un converges uniformly in any closed domain. Similar
statements hold for vn and wn. ¤

In what follows, we carry out numerical computations of solutions of the set of
equations (2.1–2.3) for two problems, namely for square and triangular cancer sites.
Calculations are based on evaluating the first approximation for the concentration
of normal and cancer cells and for the chemical agent namely, u(1), v(1) and w(1) .

5. Numerical Computation

a. A square site
For a square site, we shall assume that cancer cells are concentrated in a square

site of size L, while outside this site the concentration takes the value of the sss
which is zero or otherwise. A similar initial concentration for the normal cells is
taken appropriately. While for that of the chemotherapy agent is taken as a constant
everywhere. Thus, we have

(5.1) v(x, 0) =
{

vo, |x| < L
0, |x| ≥ L

,

(5.2) u(x, 0) =
{

uo, |x| < L
ue, |x| ≥ L

,

(5.3) u(x, 0) =
{

wo, |x| < mL
0, |x| ≥ mL, m > 1 ,

The boundary conditions are taken at x = ±∞ as u = us, v = 0 and w(−∞, t) =
w(∞, t). We mention that the initial conditions uo, vo and wo are taken to satisfy
ut(uo, vo, wo) > 0, vt(uo, vo, wo) < 0 while wt(uo, vo, wo) is taken positive or negative
(cf. figures 4 and 5).
Also wo is taken to satisfy cases where solutions tends asymptotically to stable
equilibrium states. The parameter values taken in figures 2 and 3 are reconsidered
here.

We evaluate the first approximations namely u(1), v(1) and w(1) which are given
by

(5.4) u(1) = ue +
(u(0) − ue)

1− (u(0) − ue)
∫ t

0

u(0)α1(1−u(0)
k1

)−q1v(0)− p1w(0)

a1+u(0)

(u(0)−ue)2

dt1

(5.5) v(1) = ve +
(v(0) − ve)

1− (v(0) − ve)
∫ t

0

v(0)α1(1− v(0)
k1

)−q1u(0)− p1w(0)

a1+v(0)

(v(0)−ve)2

dt1
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(5.6) w(1) = we +
(w(0) − we)

1− (w(0) − we)
∫ t

0

ξw(0)+∆−(
c1u(0)

a1+u(0) +
c2v(0)

a2+v(0) )w(0)

(w(0)−we)2

dt1

where u(0), v(0) and w(0) are solutions of the equations (5.15) and are given by

(5.7) u(0) ≡ u(0)(x, t) = ue + (uo − ue)f1

(5.8) v(0) ≡ v(0)(x, t) = vof2

(5.9) w(0) ≡ w(0)(x, t) = f̃3wo,

(5.10) fi =
1
2

[
erf

(
L− x

2
√

Dit

)
+ erf

(
L + x

2
√

Dit

)]
, f̃i = fi(mL).

Hereafter, we shall take m = 2.
Numerical results for the concentrations of the chemotherapy agent, normal and
cancer cells are carried out after (5.4–5.6) and they are shown in figures 4 a, b and
c.

For the initial values (uo, vo, wo) = (1100, 0.5, 92) and for parameter values
mentioned in the legend of Figure 2. In figures 5 a, b and c the initial values are
taken (uo, vo, wo) = (110, 1100, 800) and parameter values are taken after the legend
of Figure 3. Further parameters are included in the legends.
After these figures, we find that for small time values diffusion effects manifest
through enlarging the range of initial conditions . For later times, predation terms
due to the chemical agent handle diffusion effects. This holds in the concentrations
of the normal and cancer cells.
Researches are carried out to design an intelligent chemotherapy agent to attack
directly the cancer site leaving other sites free from the agent.
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Figures 4 a, b and c. The concentration of the normal and cancer cells and
of the chemotherapy agent are displayed against x for different values of t. The
parameter values are taken as α1 = 1.5, α2 = 10, k1 = 1460; k2 = 2100, q1 =
.0075, q2 = 0.005, p1 = 0.0008, p2 = 0.08, a1 = 1, a2 = 1, c1 = 0.0024, c2 = 0.24,∆ =
2000; ζ := 20; D1 = 2, D2 = 4; D3 = .5, L = 10, uo = 1100, vo = 0.5, wo = 92, us =
1459.950, vs = 0, ws = 99.988.
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Figures 5 a, b and c. The concentration of the normal and cancer cells and
of the chemotherapy agent are displayed against x for different values of t. The
other parameter values are taken as α1 = 13, α2 = 37, k1 = 125; k2 = 167, q1 =
.084, q2 = 0.08, p1 = 0.0058, p2 = 18, a1 = 20, a2 = 801, c1 = 0.001, c2 = 36, ∆ =
50000; ζ := 50; D1 = 20, D2 = 10; D3 = 30, L = 10, uo = 110, vo = 1100, wo =
800, us = 122.65, vs = 26.44, ws = 967.89.

In this case instead of considering a more flat initial concentration for the chem-
ical agent, we use the initial condition

(5.11) w(x, 0) =
{

wo, |x| < L
0, |x| ≥ L

,

(5.12) w(0)(x, t) = wof3

where fi are given by (5.10). By using the same initial value wo = 92 as in Figure
4; numerical results are carried out and they show no relevant change in the con-
centrations of the normal and cancer cells. So that they shall not be produced here.
Practically the relaxation time, the effective time required for the system to evolute
from the initial state reaching asymptotically the equilibrium point, is the same.
But if the initial dose is increased namely wo = 110, we find that the relaxation
time is remarkably decreased. (see figure 6)
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Figure 6 a, b and c. The concentrations of the normal and cancer cells and the
chemotherapy agent are displayed against x for different values of t . The other
parameter values are taken as in figures 6 but w(x, 0) = 0 for x < −L or x > L and
w(x, 0) = wo = 110 for −L < x < L.

b. A triangular site.
In this case, initial conditions for the concentrations of the normal and cancer

cells may be taken as

(5.13) u(x, 0) =

{
uo
|x|
L

, |x| < L

ue, |x| ≥ L
,

(5.14) v(x, 0) =

{
vo(1− |x|

L
), |x| < L

0, |x| ≥ L
,

(5.15) w(x, 0) =
{

wo, |x| < mL
0, |x| ≥ mL, m > 1 ,

The boundary conditions are taken the same as before. In this case the solutions
of the equations (5.18) are given by

(5.16) u(0)(x, t) = ue(1− f1)− h1 − g1

(5.17) v(0)(x, t) = vof2 + h2 + g2

(5.18) w(0)(x, t) = wof̃3,

where

(5.19) hi =
x

2L

(
−erf

(
L− x

2
√

Dit

)
+ erf

(
L + x

2
√

Dit

)
− 2erf

(
x

2
√

Dit

))
,

(5.20) gi =
(

e
− (L−x)2

4Dit + e
− (L+x)2

4Dit − 2e
−x2
4Dit

) √
Dit

πL2
,

and fi are given by (5.10). Numerical results for the first approximations given
by (5.4–5.6) are carried out. They are shown in figures 7 a, b and c for the same
parameter values given in figure 2.
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Figures 7 a, b and c. The concentrations of the normal and cancer cells and of
the chemotherapy agent are displayed against x for different values of t. The other
parameter values are taken as in figures 4 but in a triangular site.

After figures 4-7, we find that no traveling wave generation occurs which con-
firms the predations of theorem 5. We think that in the present model, predation
by the chemical agent blocks generation of these waves. To justify this statement,
numerical computations are carried out in the absence of the chemotherapy agent
by setting w = ∆ = 0 in (2.1–2.3). The results are shown in figures 8 a and b where

they show the generation of traveling waves propagating at speed ≈ ∆x

∆t
≈ 2 for

the normal cells and at speed ≈ ∆x

∆t
≈ 2 for the cancer cells.
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Figures 8 a and b. The concentrations of the normal and cancer cells in the
absence of the chemical agent for α1 = 1.5, α1 = 10, k1 = 1460, k2 = 2100, q1 =
.0075, q2 = 0.005, D1 = 2, D2 = 4, L = 10, uo = 1200, vo = 45, us = 0, vs = 2100.
These figures show generation of traveling waves.

6. Conclusions

In a chemotherapy cancer treatment, a target equilibrium state is relevant to
be attained. The bounds for the initial dose of the chemotherapy agent which is
required to attain a state of no cancer cell present are determined. It has been
found that diffusion effects are relevant for small time values and no generation
of traveling waves occurs. We think that in chemotherapy models of cancer treat-
ment, predation by the chemical agent blocks generation of these waves.While in
the absence of the chemical agent traveling waves are generated. These statements
are confirmed by the numerical results of solutions of the proposed diffusion model.
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