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Abstract. In this paper, we deal with the problem of meromorphic functions that have

three weighted sharing values, and obtain some uniqueness theorems which improve those

given by N. Terglane, Hong-Xun Yi & Xiao-Min Li, and others. Some examples are pro-

vided to show that the results in this paper are best possible.

1. Introduction and main results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations in the Nevan-
linna theory of meromorphic functions as explained in [3]. It will be convenient to
let E denote any set of positive real numbers of finite linear measure, not necessarily
the same at each occurrence. For any nonconstant meromorphic function h(z), we
denote by S(r, h) any quantity satisfying S(r, h) = o(T (r, h)) (r →∞, r 6∈ E).

Let f(z) and g(z) be two nonconstant meromorphic functions, and let a ∈
C ∪ {∞}, where C ∪ {∞} denotes the extended complex plane. We denote by
N0(r, a, f, g) the counting function of the common zeros of f(z) − a and g(z) − a,
and each point is counted only once, where f(z)−∞means 1/f(z) (see [10]). We say
that f and g share the value a CM, provided that f and g have the same a−points
with the same multiplicities. Similarly, we say that f and g share the value a IM,
provided that f and g have the same a−points ignoring multiplicities (see [12]).
Throughout this paper, we denote by N (k,l)(r, a) the reduced counting function of
those points in N(r, 1/(f − a)), such that a is taken by f with multiplicity k, and
such that a is taken by g with multiplicity l. In this paper, we also need the following
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definition.

Definition 1.1 ([1, Definition 1]). Let p be a positive integer and a ∈ C∪{∞}. Then
by Np)(r, 1

f−a ) we denote the counting function of those zeros of f−a (counted with
proper multiplicities) whose multiplicities are not greater than p, by Np)(r, 1

f−a ) we
denote the corresponding reduced counting function (ignoring multiplicities). By
N(p(r, 1

f−a ) we denote the counting function of those zeros of f − a (counted with
proper multiplicities) whose multiplicities are not less than p, by N (p(r, 1

f−a ) we
denote the corresponding reduced counting function (ignoring multiplicities).

Let a1, a2, a3 and a4 be four distinct elements in C ∪ {∞}. If aj 6= ∞ (j =
1, 2, 3, 4), we define their cross ratio to be

(a1, a2, a3, a4) =
a1 − a3

a2 − a3
:

a1 − a4

a2 − a4
.

If ak = ∞ (1 ≤ k ≤ 4), define their cross ratio to be

(a1, a2, a3, a4) = lim
ak→∞

(a1 − a3)(a2 − a4)
(a2 − a3)(a1 − a4)

.

If A ∈ C and A 6= 0, 1, then (A, 1, 0,∞) = A. Throughout this paper, let a, b, c, d
be four distinct elements in C ∪ {∞}, and let

(1.1) L(w) =
(w − c)(b− d)
(w − d)(b− c)

.

It is obvious that

(1.2) L(a) = (a, b, c, d).

In 1989, N. Terglane proved the following result.

Theorem A ([11, P. 61, Theorem 3.14]). Let f and g be nonconstant meromorphic
functions and let a, b, c and d be four distinct complex numbers such that (a, b, c, d) ∈
{−1, 2, 1

2}. If f and g share b, c, d CM, and if

(1.3) N0(r, a, f, g) 6= S(r, f)

then f is a Möbius transformation of g.

Now it is natural to ask the following two questions.

Question 1.1 ([4, Question 1]). What can be said if we get rid of the condition
“(a, b, c, d) ∈ {−1, 2, 1

2}” in Theorem A ?

Question 1.2 ([5]). Is it really possible to relax in any way the nature of sharing
any one of a, b and c in Theorem A ?
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Let f and g share 0, 1 and ∞ IM, next we denote by N0(r) the counting function
of the zeros of f − g not containing the zeros of f, 1/f and f − 1.

In 2003, the first question is answered by X. M. Li and H. X. Yi in the following
theorem.

Theorem B([4, Theorem 1]). Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1 and ∞ CM, and let a(6= 0, 1) be a finite complex number such
that (1.3) holds, then f is a Möbius transformation of g, apart from the following
three exceptional cases:
(i) f ≡ es1γ−1

e(k1+1)γ−1
, g ≡ e−s1γ−1

e−(k1+1)γ−1
, with 1 ≤ s1 ≤ k1 and a = s1

k1+1 ,

(ii) f ≡ e(k1+1)γ−1
e(k1+1−s1)γ−1

, g ≡ e−(k1+1)γ−1
e−(k1+1−s1)γ−1

, with 1 ≤ s1 ≤ k1 and a = k1+1
k1+1−s1

,

(iii) f ≡ es1γ−1
e−(k1+1−s1)γ−1

, g ≡ e−s1γ−1
e(k1+1−s1)γ−1

, with 1 ≤ s1 ≤ k1 and a = s1
s1−k1−1 ,

where k1 (≥ 2) and s1 are positive integers such that s1 and k1 + 1 are relatively
prime, and γ is a nonconstant entire function. Furthermore, the following equality
holds:

(1.4) N (1,1)(r, a) = N0(r) + S(r, f) =
1
k1

T (r, f) + S(r, f).

In this paper, we will deal with Question 1.2. To this end we employ the idea
of weighted sharing of values which measures how close a shared value is to being
shared IM or to being shared CM. The notion is explained in the following definition.

Definition 1.2([6, Definition 4]). Let k be a nonnegative integer or infinity. For
any a ∈ C ∪ {∞}, we denote by Ek(a, f) the set of all a−points of f, where an
a−point of multiplicity m is counted m times if m ≤ k, and k + 1 times if m > k.
If Ek(a, f) = Ek(a, g), we say that f, g share the value a with weight k.

Remark 1.1. Definition 1.2 implies that if f, g share a value a with weight k, then
z0 is a zero of f − a with multiplicity m(≤ k) if and only if it is a zero of g− a with
multiplicity m(≤ k), and z0 is a zero of f − a with multiplicity m(> k), if and only
if it is a zero of g − a with multiplicity n(> k), where m is not necessarily equal
to n. Throughout this paper, we write f, g share (a, k) to mean that f, g share
the value a with weight k. Clearly, if f, g share (a, k), then f, g share (a, p) for all
integer p, 0 ≤ p < k. Also we note that f, g share a value a IM or CM if and only
if f, g share (a, 0) or (a,∞), respectively.

Using the idea of weighted sharing, we will establish the following theorem,
which improves Theorem B and deals with Question 1.2.

Theorem 1.1. Let f and g be two distinct nonconstant meromorphic functions
sharing (0, k1), (1, k2) and (∞, k3), where k1, k2 and k3 are three positive integers
satisfying

(1.5) k1k2k3 > k1 + k2 + k3 + 2
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and let a(6= 0, 1) be a finite complex number such that (1.3) holds. If f is a Möbius
transformation of g, then

(1.6) N0(r, a, f, g) = T (r, f) + S(r, f)

and there exists a nonconstant entire function γ such that f and g are given by one
of the following three expressions:
(a) f = eγ and g = e−γ , where a = −1,
(b) f = eγ + 1 and g = e−γ + 1, where a = 2,
(c) f = 1

eγ+1 and g = 1
e−γ+1 , where a = 1/2.

If f is not any Möbius transformation of g, then there exist two positive integers
k1 (≥ 2) and s1 that are relatively prime, and there exists a nonconstant entire
function γ, such that (1.4) holds, and such that f and g are given by one of the
three expressions (i), (ii) and (iii) in Theorem B.

Example 1.1. Let f ≡ ez2
−1

ez−1 , g ≡ e−z2
−1

e−z−1 and let a be a complex number
satisfying a 6= 0, 1,∞. Then f and g share (0, 1), (1, 2) and (∞, 6), furthermore,
N0(r, a, f, g) = S(r, f), we can verify that f is not any Möbius transformation of
g, and the three cases (i), (ii) and (iii) in Theorem B can not occur. This example
shows that the condition (1.3) in Theorem 1.1 is best possible.

From Theorem 1.1 we deduce the following two corollaries.

Corollary 1.1. Let f and g be two nonconstant meromorphic functions sharing
(0, k1), (1, k2) and (∞, k3), where k1, k2 and k3 are three positive integers satisfying
(1.5), and let a(6= 0, 1) be a finite complex number such that (1.3) holds. If for any
positive integer n, N (1,1)(r, a) 6= 1

nT (r, f) + S(r, f), then f ≡ g.

Corollary 1.2. Let f and g be two nonconstant meromorphic functions sharing
(0, k1), (1, k2) and (∞, k3), where k1, k2 and k3 are three positive integers satisfying
(1.5), and let a be a finite nonrational complex number. If (1.3) holds, then f ≡ g.

In 2002, H. X. Yi and X. M. Li proved the following theorem.

Theorem C([13, Theorem 1.1]). Let f and g be two nonconstant meromorphic
functions, and let a1, a2, b, c and d be five distinct elements in C ∪ {∞}. If f and
g share b, c and d CM, and if

N0(r, a1, f, g) 6= S(r, f),(1.7)
N0(r, a2, f, g) 6= S(r, f)(1.8)

then f ≡ g.

In this paper, we will prove the following theorem, which improves Theorem C.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions sharing
(0, k1), (1, k2) and (∞, k3), where k1, k2 and k3 are three positive integers satisfying
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(1.5), and let a1 (6= 0, 1) and a2 (6= 0, 1) be two distinct finite complex numbers. If
(1.7) and (1.8) hold, then f ≡ g.

Example 1.2. Let f(z) = e−z, g(z) = ez. Then it is verified that f and g share
(0, 1), (1, 2) and (∞, 6), and N0(r,−1, f, g) = T (r, f) + S(r, f). Furthermore, we
verify that for any b ∈ C \ {−1, 0, 1, }, we have N0(r, b, f, g) = 0. However, f 6≡ g.
This example illustrates that we can not delete either of the condition (1.7) and
(1.8) in Theorem 1.2.

In 2002, H. X. Yi and X. M. Li proved the following theorem.

Theorem D([13, Theorem 1.2]). Let f and g be two distinct nonconstant mero-
morphic functions, and let a, b, c and d be four distinct elements in C ∪ {∞}. If f
and g share b, c and d CM, and if (1.3) holds, then (a, b, c, d) is a rational number,
and

(1.9) N(r,
1

f − a
) = T (r, f) + S(r, f),

(1.10) N(r,
1

g − a
) = T (r, g) + S(r, f)

and

(1.11) N0(r, a, f, g) =
1
k1

T (r, f) + S(r, f),

where k1 is a positive integer.
In this paper, we will prove the following theorem, which improves Theorem D.

Theorem 1.3. Let f and g be two distinct nonconstant meromorphic functions
sharing (0, k1), (1, k2) and (∞, k3), where k1, k2 and k3 are three positive integers
satisfying (1.5), and let a (6= 0, 1) be a finite complex number such that (1.3) holds,
then a is a rational number, and (1.9), (1.10) and (1.11) still hold.

Example 1.3. Let f(z) = ez−1
ez+1 , g(z) = e−z−1

e−z+1 . Then it is verified that f and
g share (0, 1), (1, 2) and (∞, 6), and f is a fractional linear transformation of g.
Moreover, N(r, 1

f+1 ) = 0, N(r, 1
g+1 ) = 0 and N0(r,−1, f, g) = 0.

This example illustrates the condition (1.3) in Theorem 1.3 is necessary.

Example 1.4. Let f(z) = e2z+ez+1, g(z) = e−2z+e−z+1. Then it is verified that f
and g share (0, 1), (1, 2) and (∞, 6), and f is not any fractional linear transformation
of g. Moreover, N(r, 1

f−3/4 ) = T (r, f)/2 + S(r, f), N(r, 1
g−3/4 ) = T (r, g)/2 + S(r, g)

and N0(r, 3/4, f, g) = 0.

This example also illustrates the condition (1.3) in Theorem 1.3 is necessary.
From Theorem 1.3 we deduce the following corollary.
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Corollary 1.3. Let f and g be two nonconstant meromorphic functions sharing
(0, k1), (1, k2) and (∞, k3), where k1, k2 and k3 are three positive integers satisfying
(1.5), and let a(6= 0, 1) be a finite complex number such that (1.3) holds. If

(1.12) N(r,
1

f − a
) 6= T (r, f) + S(r, f),

then f ≡ g.

In 2002, H. X. Yi and X. M. Li proved the following theorem.

Theorem E([13, Theorem 1.3]). Let f and g be two distinct nonconstant mero-
morphic functions, and let a, b, c and d be four distinct elements in C ∪ {∞}. If f
and g share b, c and d CM, and if (1.6) holds, then (a, b, c, d) ∈ {−1, 2, 1

2}, and f is
a fractional linear transformation of g, and assumes one of the following relations:
(i) L(f) = eγ , L(g) = e−γ , this occurs only for (a, b, c, d) = −1
(ii) L(f) = eγ + 1, L(g) = e−γ + 1, this occurs only for (a, b, c, d) = 2
(ii) L(f) = 1

eγ+1 , L(g) = 1
e−γ+1 , this occurs only for (a, b, c, d) = 1

2

From Theorem 1.1 we deduce the following theorem, which improves Theorem
E.

Theorem 1.4. Let f and g be two distinct nonconstant meromorphic functions
sharing (0, k1), (1, k2) and (∞, k3), where k1, k2 and k3 are three positive integers
satisfying (1.5), and let a(6= 0, 1) be a finite complex number such that (1.6) holds,
then a ∈ {−1, 2, 1

2}, and f is a fractional linear transformation (Möbius transfor-
mation) of g, furthermore, there exists a nonconstant entire function γ such that f
and g are given by one of the three expressions (a), (b) and (c) in Theorem 1.1.

Example 1.5. Let f(z) = 1−ez

2 , g(z) = 1−e−z

2 . Then it is verified that f and g

share (0, 1), (1, 2) and (∞, 6), and N0(r, a, f, g) = 0, where a ∈ C \ {0, 1} is an
arbitrary finite complex number. Moreover, we see that f is a fractional linear
transformation of g, however, the three cases (a), (b) and (c) in Theorem 1.4 can
not occur. From this example and Theorem 1.1 we see that the condition (1.6) of
Theorem 1.4 is necessary.

In 2002, H. X. Yi and X. M. Li proved the following theorem.

Theorem F([13, Theorem 1.4]). Let f and g be two distinct nonconstant mero-
morphic functions, and let a, b, c and d be four distinct elements in C ∪ {∞}. If f
and g share b, c and d CM, and if (1.3) and

(1.13) N0(r, a, f, g) 6= T (r, f) + S(r, f)

hold, then (a, b, c, d) 6∈ {1, 0,−1, 2, 1
2} is a rational number, and there exist two

positive integers k1 (≥ 2) and s1 such that k1 + 1 and s1 are relatively prime, and
there exists a nonconstant entire function γ, such that (1.4) holds, and such that f
and g are given by one of the following three cases.
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(i) L(f) ≡ es1γ−1
e(k1+1)γ−1

, g ≡ e−s1γ−1
e−(k1+1)γ−1

, with 1 ≤ s1 ≤ k1 and (a, b, c, d) = s1
k1+1 ,

(ii) L(f) ≡ e(k1+1)γ−1
e(k1+1−s1)γ−1

, L(g) ≡ e−(k1+1)γ−1
e−(k1+1−s1)γ−1

, with 1 ≤ s1 ≤ k1 and
(a, b, c, d) = k1+1

k1+1−s1
,

(iii) L(f) ≡ es1γ−1
e−(k1+1−s1)γ−1

, L(g) ≡ e−s1γ−1
e(k1+1−s1)γ−1

, with 1 ≤ s1 ≤ k1 and
(a, b, c, d) = s1

s1−k1−1 .

From Theorem 1.1 we deduce the following theorem, which improves Theorem
F.

Theorem 1.5. Let f and g be two distinct nonconstant meromorphic functions
sharing (0, k1), (1, k2) and (∞, k3), where k1, k2 and k3 are three positive integers
satisfying (1.5), and let a(6= 0, 1) be a finite complex number such that (1.3) and
(1.13) hold, then a 6∈ {−1, 2, 1

2}, and there exists a nonconstant entire function γ
such that f and g are given by one of the three expressions (i), (ii) and (iii) in
Theorem B.

Remark 1.2. From Example 1.1 and Theorem 1.4 we see that the conditions (1.3)
and (1.13) of Theorem 1.5 are necessary.

2. Some lemmas

Lemma 2.1([7, Lemma 6]). Let f and g be two distinct nonconstant meromorphic
functions such that f and g share 0, 1 and ∞ IM. If f is a Möbius transformation
of g, then f and g satisfy one of the following six relations:
(i) f · g ≡ 1,
(ii) (f − 1)(g − 1) ≡ 1,
(iii) f + g ≡ 1,
(iv) f ≡ cg,
(v) f − 1 ≡ c(g − 1),
(vi) [(c− 1)f + 1] · [(c− 1)g− c] ≡ −c, where c (6= 0, 1) is a finite complex number.

Lemma 2.2([2]). Let f and g be two nonconstant meromorphic functions such
that f and g share 0, 1 and ∞ IM, then T (r, f) ≤ 3T (r, g) + S(r, f) and T (r, g) ≤
3T (r, f) + S(r, g).

Lemma 2.3 ([14, Lemma 2.6]). Let f and g be two distinct nonconstant meromor-
phic functions such that f and g share (0, k1), (1, k2) and (∞, k3), where k1, k2 and
k3 are three positive integers satisfying (1.5). Then
(i) N (2(r, 1

f ) + N (2(r, 1
f−1 ) + N (2(r, f) = S(r, f),

(ii) N (2(r, 1
g ) + N (2(r, 1

g−1 ) + N (2(r, g) = S(r, f).

Lemma 2.4 ([15, Lemma 6]). Let f1 and f2 be two nonconstant meromorphic func-
tions satisfying N(r, fj) + N(r, 1

fj
) = S(r) (j = 1, 2). Then either N0(r, 1; f1, f2) =

S(r) or there exist two integers s, t(|s| + |t| > 0) such that fs
1f t

2 ≡ 1 where
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N0(r, 1; f1, f2) denotes the reduced counting function of f1 and f2 related to the
common 1−points, and T (r) = T (r, f1) + T (r, f2), S(r) = o(T (r))(r −→ ∞, r 6∈ E)
only depending on f1 and f2.

Lemma 2.5 ([4, Theorem 1]). Let f and g be two distinct nonconstant meromor-
phic functions sharing 0, 1 and ∞ CM, and let a(6= 0, 1) be a finite complex number
such that (1.3) holds. If f is not any Möbius transformation of g, then f and g are
given by one of the following three expressions:
(i) f ≡ es1γ−1

e(k1+1)γ−1
, g ≡ e−s1γ−1

e−(k1+1)γ−1
, with 1 ≤ s1 ≤ k1 and a = s1

k1+1 ,

(ii) f ≡ e(k1+1)γ−1
e(k1+1−s1)γ−1

, g ≡ e−(k1+1)γ−1
e−(k1+1−s1)γ−1

, with 1 ≤ s1 ≤ k1 and a = k1+1
k1+1−s1

,

(iii) f ≡ es1γ−1
e−(k1+1−s1)γ−1

, g ≡ e−s1γ−1
e(k1+1−s1)γ−1

, with 1 ≤ s1 ≤ k1 and a = s1
s1−k1−1 ,

where k1 (≥ 2) and s1 are positive integers such that s1 and k1 + 1 are relatively
prime, and γ is a nonconstant entire function, and such that (1.4) still holds.

Lemma 2.6 ([8, Lemma 2.5] or [15]). Let s (> 0) and t be mutually prime integers,
and let c be a finite complex number such that cs = 1, then there exists one and only
one common zero of ωs − 1 and ωt − c.

Lemma 2.7 ([8, Lemma 2.6] or [9]). Let f be a nonconstant meromorphic func-

tion, and let F =
∑p

k=0 akfk

/ ∑q
j=0 bjf

j be an irreducible rational function in

f with constant coefficients {ak} and {bj}, where ap 6= 0 and bq 6= 0. Then
T (r, F ) = d T (r, f) + O(1), where d = max {p, q}.

3. Proof of Theorems

Proof of Theorem 1.1. We discuss the following two cases.

Case 1. Suppose that f is a Möbius transformation of g. Then from (1.3) and
Lemma 2.1 we deduce that f and g assume one of the three relations (i), (ii) and
(iii) in Lemma 2.1. We discuss the following three subcases.

Subcase 1.1. Suppose that f and g satisfy the relation (i) in Lemma 2.1. Then 0
and ∞ are Picard exceptional values of f and g. So we let

(3.1) f = eγ

and

(3.2) g = e−γ ,

where γ is a nonconstant entire function. From (3.1) and (3.2) we have

(3.3) f − a = eγ − a,

(3.4) g − a = − a

eγ
· (eγ − 1

a
).
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Thus from (1.3), (3.3) and (3.4) we deduce (1.6) and

(3.5) a =
1
a
.

From (3.5) we get

(3.6) a = −1.

From (3.1), (3.2), (3.5) and (3.6) we get (a) of Theorem 1.1.

Subcase 1.2. Suppose that f and g satisfy the relation (ii) in Lemma 2.1. Then
1 and ∞ are Picard exceptional values of f and g. So we let

(3.7) f = 1 + eγ

and

(3.8) g = 1 + e−γ ,

where γ is a nonconstant entire function. From (3.7) and (3.8) and in the same
manner as in Subcase 1.1 we get (1.6) and (b) of Theorem 1.1.

Subcase 1.3. Suppose that f and g satisfy the relation (iii) in Lemma 2.1. Then
0 and 1 are Picard exceptional values of f and g. So we let

(3.9) f =
1

1 + eγ

and

(3.10) g =
1

1 + e−γ
.

From (3.9) and (3.10) and in the same manner as in Subcase 1.1 we get (1.6) and
(c) of Theorem 1.1.

Case 2. Suppose that f is not any Möbius transformation of g. First, from Lemma
2.2 we get

(3.11) S(r, f) = S(r, g).

Let

(3.12)
f − 1
g − 1

= h1,
f

g
= h2

and

(3.13) h0 =
h1

h2
,
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then from (3.11)-(3.13) and the above supposition we deduce that none of h0, h1

and h2 is a constant, and deduce that

(3.14) f =
h1 − 1
h0 − 1

and

(3.15) g =
h−1

1 − 1
h−1

0 − 1
.

On the other hand, from (3.11) and Lemma 2.3 we deduce

(3.16) N(r,
1
hj

) + N(r, hj) = S(r, f) (j = 1, 2).

Again from (3.14) and (3.15) we deduce

(3.17) f − g =
(h1 − 1) (1− h−1

2 )
h1h

−1
2 − 1

.

From (3.11)-(3.17) we deduce

(3.18) N0(r) = N0(r, 1;h1, h0) + S(r, f) = N0(r, 1;h1, h2) + S(r, f).

Again from (1.3) we deduce

(3.19) N0(r) 6= S(r, f).

From (3.18) and (3.19) we get

(3.20) N0(r, 1;h1, h2) 6= S(r, f).

By (3.16), (3.20) and Lemma 2.4 we know that there exist two integers s and t
(|s|+ |t| > 0) such that

(3.21) hs
1h

t
2 ≡ 1.

Substituting (3.12) into (3.21) we get

(3.22) f t(f − 1)s ≡ gt(g − 1)s.

Noting that f is not any Möbius transformation of g, from (3.22) we deduce that
|s| · |t| 6= 0 and |s| 6= |t|, and so it follows that f and g share 0, 1 and ∞ CM.
Combining Lemma 2.5 and Lemma 2.6 we deduce (1.4) and (i), (ii) and (iii) of
Theorem B. Theorem 1.1 is thus completely proved.

Proof of Theorem 1.2. Suppose that f 6≡ g. We discuss the following two cases.
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Case 1. Suppose that f is a Möbius transformation of g. Then f and g assume one
of the relations (a), (b) and (c) in Theorem 1.1, say, f and g assume the relation
(a) in Theorem 1.1, then a1 = a2 = −1, this is impossible.

Case 2. Suppose that f is not any Möbius transformation of g. Then f and g
assume one of the relations (i), (ii) and (iii) in Theorem B, say, f and g assume the
relation (i) in Theorem B, then a1 = a2 = s1

k1+1 , this is impossible.
Theorem 1.2 is thus completely proved.

Proof of Theorem 1.3. The assumptions of Theorem 1.3 imply that the conclu-
sion of Theorem 1.1 is valid. We discuss the following two cases.

Case 1. Suppose that f is a Möbius transformation of g. Then f and g assume one
of the relations (a), (b) and (c) in Theorem 1.1, say, f and g assume the relation
(c) in Theorem 1.1, then a = 1/2 and

(3.23) f − 1
2

= − 1
2(eγ + 1)

· (eγ − 1)

and

(3.24) f − 1
2

= − 1
2(e−γ + 1)

· (e−γ − 1).

From (3.23) and (3.24) we deduce (1.9), (1.10) and

(3.25) N0(r,
1
2
, f, g) = T (r, f) + S(r, f).

From (3.23)-(3.25) we get (1.9)-(1.11).

Case 2. Suppose that f is not any Möbius transformation of g. Then from Theorem
1.1 we see that f and g assume one of the relations (i), (ii) and (iii) in Theorem
B such that (1.4) holds, and so from (1.4) we get (1.11). We discuss the following
three subcases.

Subcase 2.1. Suppose that f and g assume the relation (i) in Theorem B, then

(3.26) f ≡ e(k1+1)γ − 1
es1γ − 1

,

(3.27) g ≡ e−(k1+1)γ − 1
e−s1γ − 1

and a = s1
k1+1 , where k1 (≥ 2) and s1 are positive integers satisfying 1 ≤ s1 ≤ k1,

such that s1 and k1 +1 are relatively prime, and γ is a nonconstant entire function.
Thus

(3.28) f − a =
(k1 + 1)es1γ − s1e

(k1+1)γ + (s1 − k1 − 1)
(k1 + 1)(e(k1+1)γ − 1)
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and

(3.29) g − a =
(k1 + 1)e−s1γ − s1e

−(k1+1)γ + (s1 − k1 − 1)
(k1 + 1)(e−(k1+1)γ − 1)

.

On the other hand, from Lemma 2.6 we deduce that ω = 1 is the only common zero
of P1(ω) = ωk1+1 − 1 and P2(ω) = ωs1 − 1. Similarly, ω = 1 is the only common
zero of P3(ω) = (k1 + 1)ωs1 − s1ω

k1+1 + (s1− k1− 1) and P4(ω) = ωk1+1− 1. Thus
from (3.26)-(3.29) and Lemma 2.7 we deduce (1.9) and (1.10).

Subcase 2.2. Suppose that f and g assume the relation (ii) in Theorem B, then

(3.30) f ≡ e(k1+1)γ − 1
e(k1+1−s1)γ − 1

,

(3.31) g ≡ e−(k1+1)γ − 1
e−(k1+1−s1)γ − 1

and a = k1+1
k1+1−s1

, where k1 (≥ 2) and s1 are positive integers satisfying 1 ≤ s1 ≤ k1,
such that s1 and k1 +1 are relatively prime, and γ is a nonconstant entire function.
Thus

(3.32) f − a =
(k1 + 1− s1)e(k1+1)γ − (k1 + 1)e(k1+1−s1)γ + s1

(k1 + 1− s1)(e(k1+1−s1)γ − 1)

and

(3.33) g − a =
(k1 + 1− s1)e−(k1+1)γ − (k1 + 1)e−(k1+1−s1)γ + s1

(k1 + 1− s1)(e−(k1+1−s1)γ − 1)
.

From (3.30)-(3.33) and in the same manner as in Subcase 2.1 we deduce (1.9) and
(1.10).

Subcase 2.3. Suppose that f and g assume the relation (iii) in Theorem B, then

(3.34) f ≡ es1γ − 1
e−(k1+1−s1)γ − 1

,

(3.35) g ≡ e−s1γ − 1
e(k1+1−s1)γ − 1

and a = s1
s1−k1−1 , where k1 (≥ 2) and s1 are positive integers satisfying 1 ≤ s1 ≤ k1,

such that s1 and k1 +1 are relatively prime, and γ is a nonconstant entire function.
Thus

(3.36) f − a =
(s1 − k1 − 1)es1γ − s1e

−(k1+1−s1)γ + (k1 + 1)
(s1 − k1 − 1)(e−(k1+1−s1)γ − 1)



A Some further results on weighted sharing of values 431

and

(3.37) g − a =
(s1 − k1 − 1)e−s1γ − s1e

(k1+1−s1)γ + (k1 + 1)
(s1 − k1 − 1)(e(k1+1−s1)γ − 1)

.

From (3.34)-(3.37) and in the same manner as in Subcase 2.1 we deduce (1.9) and
(1.10). Theorem 1.3 is thus completely proved.
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