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ABSTRACT. In this paper, by introducing a new function with two parameters, we
give another generalizations of the Hilbert’s integral inequality with a mixed kernel
k(z,y) = m and a best constant factors. As applications, some particular
results with the best constant factors are considered.

1. Introduction

If f, g are real functions such that 0 < [ f2(z)dz < oo and 0 < [;* g*(x)dx <
00, then we have (see [4])

(1.1) AOO 000 Wdzdy < 7r{/0Oo f2(x)dx /000 gQ(x)dx}%,

(1.2) / /OQ““‘“”’ <>g<y>dxdy<w2{/0°of2<x>dx /Ooog%x)dm}%,

where the constant factor m and 7% are the best possible. Inequality (1.1) and (1.2)
are the well known Hilbert’s inequality. They have been studied and generalized in
many directions by a number of mathematicians(see [1]-[3], [6]-[12]).
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In this paper, we give a generalization of Hilbert’s inequality as the following.

[ f(2)g(y) * 2 <, :
/0 /O A(x+y)+B|x—y|dwdy<C(/0 f (ff)dx/o 9 (y)dy)?,

where C' is a constant.

2. Main results

Lemma 2.1 Setting

o0 1 U, 1
w(u):/o A(u+v)+B|u—v\(;)2dv’

where A >0 and B > —A, then w(u) = C(A4, B) is a constant.
In particular C(1,0) =, C(1,1) = 2.

Proof. For fixed u, letting t = v/u, we get

o 1
/o A(u 4+ tu) + Blu — tu]

> 1 1.1
= “)adt
/0 A(1+t)+B|1—t|(t)

wu) = (%)%dtu

_ /1 1 t—%dt+/oo 1 t2dt
- Jo A+ B+ (A-DB)t . (A-B)+(A+B)t '

Setting t = % for the second integral, we get

1 1 ) [ee} 1 1 —1
_ t-2dt Pd
w(u) /0 A+B+(A-B)t +/1 A-B)+@A+BL" @
_ /1 1 tédt+/l ! v ide
= ), A+B+(A-B)t o AtB+(A-B)x

= 2/1 L trdt
N o A+ B+ (A-B)t '

Setting tz = x, we have

w(u)

1
1 1
2 tT2dt
/O ATBr(A-Bi

2/1 . L 2
o A+ B+ (A—B)x? = v
4 1

= dz.
A+B/0 1+ 47822
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(i) For —A < B < A, we get

A-B
arctan

4 ! 1 4
de = -
AJrB/0 14 47222 N vy o A+ B

(ii) For B > A > 0, we get

wu) =

dx

(W) 4 /1 1
wlu =
A+ B Jy 1447522
4 /1 1 g B—A
X
2 _ A2 B_ A+ B
vB A2 Jo 1_( ﬁ+§$)2 +

4 | BHVB A
= n

N A
(iii) For B = A, it turns into
! 1 1 4
w(u)_2/0 A+B+(A—B)tt =7

Thus w(u) = C. In particular

0(1,0)=/ ! (“)%du:/ BRI T
0 0

u—!—v; 1+t

c,1) = /OOO L (Myige= /Ooo L (“ay—2

u+v+u—ol v 2max{u,v} v

Lemma 2.2 Suppose e >0, A >0 and B > —A, then

o0 g 1 1te
2.1 —e—l “Z dt=0(1 ).
(2.1) /1 v /0 AdsneBi—q =~ #=0WE=0)

Proof. For x > 1, There exist € > 0, which is small enough, such that 1+ % > 0,
we have

= 1 1te 5 1te kx P
tm2dt <k tm 2 dt = ,
/0 A(l+1t)+ B|1 -t /0 16}

where k = % or M%’ 6=1-— 1%7 and we can take a = i, if e < 1/2, we get
-8B —a

x x
B Ta

1
> B 1 14e k [ k
—e—1 — === v —1—a—¢ - =1 .
/1 T /0 A(1+t)+B|1—t|t 2dtda:<a/1 x dx<a2 6k

SO
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The lemma is proved. O

Now we study the following inequality:

Theorem 2.3 Suppose f(z), g(z) >0, 0 < [;° f2(z)dz < o0, 0 < [, g*(x)dz <
00, A>0 and B> —A. Then

Y f(z)g(y) o o ,
/o /o A(x+y)+B|x—y|dxdy<C{/0 f(x)dx/o g (z)dx}z,

where the constant factor C' is the best possible. In particular
(i) for A=1,B =0, it reduces to Hilbert’s inequality

// fx dxdy<7r{/ e dx/°°92(x)d$}%.

(ii) for A=1,B =1, it reduces to Hilbert’s type inequality

/ / max{x y}dxdy < 4{/ 2 (x)dz /OC P(@)dz)d.
Proof. By Hélder’s inequality, we have
|l s
/ / x+y +xz)?xyl]%<§)i] < +y)?:y1;|xy|)}é(i>i]dxdy

[A(z
z) v 9*(v)
/ / Az +y) +B|x—y|(y) dxdyx/ / Ax+y)+B\x—y|( )3y

Define the weight function w(u) as

IA

& 1 U, 1
= —)2d
w(u) A(u+v)+B\u—U|(v) v

then the above inequality yields

[ f(@)g(y)
/0 /o A(x+y)+B|x*y|d$dy
< [/O w(x)fQ(x)dx}%[/o @ (y)g* (y)dy) .

By lemma 2.1, we have w(u) = C, thus

(2.3) // yTER fgfx y|dxdy<0{/ F(x)da}? {/ v)dz}? .
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If (2.3) takes the form of the equality, then there exist constants a and b, such
that they are not all zero and (see [5])

f*(=)

9y Y1
a (=)2
A(x +y)+ Blz — y|

)
Alx+y)+Blz—y| =z

Nl=

=b

(=)

i
Y
a.e. in (0,00) x (0, 00).
Then we have

azf?(x) = byg*(y) a.e. in (0,00) x (0, 00).

Hence we have
azf?(x) = byg*(y) = constant  a.e. in (0, 00) x (0, 00),

which contradicts the facts that 0 < fooo f?(z)dz < 0o and 0 < fo (x)dx < oo.
Hence (2.3) takes the form of strict inequality. So we have (2.2).

For 0 < & < 1, setting f-(z) = 2~ 2, for € [1,00); f-(2) = 0, for z € (0,1);
gey) =y =, fory € [1,00); 9:(y) = 0, for y € (0,1). Assume that the constant
factor C'is not the best possible, then there exists a positive number K with K < C,
such that (2.2) is valid by changing C' to K. We have

//Ax+y f%fxmdm@“({/ 2 (x)da}> {/ z)dr}: = K|e.

Since

1
A +t)+ Bl -
setting y = xt, by (2.1), we find
oo (oo}
/ f(@)g(y) drdy
A( x+y)+B|zfy\

1

—sf e—1

2 (tm)T
= dxd dxdt
/ / x—i—y +B|x—y\ = / /_1A1—|—t)+Bl—t v

—1

= /Oox*E 1[/ ! til{gdtf/gp = 7 dt]da
N o A(l+t)+ B|1—t o AQ+1t)+ B|1—{

[C + o(1)].

tdt =C+o(1) (e — 0%),

™ | =

Since for £ > 0 small enough, we haveC + o(1) < K. Thus we get C < K, which

contradicts the hypothesis. Hence the constant factor C' in (2.2) is the best possible.
O

Theorem 2.4 Suppose A > 0,B > —A, f>0and0<f0 f?(z)dx < oo. Then

<o f(z) 2 o [T 42
(2.4) /0 [/0 A(x+y)+B|x—y\dx] dy<C/0 f(x)dx




462 Yongjin Li, Yu Lin and Bing He

where the constant factor C? is the best possible. Inequality (2.4) is equivalent to
(2.2).
Proof. Setting g(y) as

= f(@)
/0 Awty) 1 By v €00

then by (2.2), we find

< /°° w )dy/oo[/ooo A(w+yf(+w)3|x—y|dx]2dy

//Ax+y f(gfx y|ddy<0{/ fA(x)dz) {/ y)dy} 3.

Hence we obtain

(2.5) 0< /000 g*(y)dy < 02/000 fA(z)dx < 0.

By (2.2), both (2.5) and (2.6) take the form of strict inequality, so we have (2.4).
On the other hand, suppose that (2.4) is valid. By Hoélder’s inequality, we find

f(z)g(y)
(2:6) / Az +y) JrB\z:fy\dxdy

- / / Az +y) +)B|x—y| 29 (y)dy

f(@) 1/2 /2
{/o [/o A+ y) + Be—y W) {/ y)dy}

Then by (2.4), we have (2.2). Thus (2.2) and (2.4) are equivalent.

If the constant C? in (2.4) is not the best possible, by (2.7), we may get a
contradiction that the constant factor C' in (2.2) is not the best possible. Thus we
complete the proof of the theorem. |
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