DOI QR코드

DOI QR Code

Effect of Carrier Confinement and Optical Properties of Two-dimensional Electrons in Al0.3Ga0.7N/GaN and Al0.3Ga0.7N/GaN/Al0.15Ga0.85N/GaN Heterostructures

Al0.3Ga0.7N/GaN 및 Al0.3Ga0.7N/GaN/Al0.15Ga0.85N/GaN 이종접합 구조에서 운반자 구속 효과와 이차원 전자가스의 광학적 특성

  • Kwack, H.S. (National Research Laboratory for Nano-Bio-Photonics, Department of Physics, Chungbuk National University) ;
  • Lee, K.S. (IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Cho, H.E. (Department of Electric and Electronic Engineering, Kyungpook National University) ;
  • Lee, J.H. (Department of Electric and Electronic Engineering, Kyungpook National University) ;
  • Cho, Y.H. (National Research Laboratory for Nano-Bio-Photonics, Department of Physics, Chungbuk National University)
  • 곽호상 (충북대학교 물리학과) ;
  • 이규석 (한국전자통신연구원 IT융합.부품연구소) ;
  • 조현익 (경북대학교 전기전자공학과) ;
  • 이정희 (경북대학교 전기전자공학과) ;
  • 조용훈 (충북대학교 물리학과)
  • Published : 2008.07.30

Abstract

We have investigated optical and structural properties of $Al_{0.3}Ga_{0.7}N$/GaN and $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ heterostructures (HSs) grown by metal-organic chemical vapor deposition, by means of Hall measurement, high-resolution X-ray diffraction, and temperature- and excitation power-dependent photoluminescence (PL) spectroscopy. A strong GaN band edge emission and its longitudinal optical phonon replicas were observed for all the samples. At 10 K, a 2DEG-related PL peak located at ${\sim}\;3.445\;eV$ was observed for $Al_{0.3}Ga_{0.7}N$/GaN HS, while two 2DEG peaks at ${\sim}\;3.42$ and ${\sim}\;3.445\;eV$ were observed for $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ HS due to the additional $Al_{0.15}Ga_{0.85}N$ layers. Moreover, the emission intensity of the 2DEG peak was higher in $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ HS than in $Al_{0.3}Ga_{0.7}N$/GaN HS probably due to an effective confinement of the photo-excited holes by the additional $Al_{0.15}Ga_{0.85}N$ layers. The 2DEG-related emission intensity decreased with increasing temperature and disappeared at temperatures above 150 K. To investigate the origin of the new 2DEG peaks, the energy-band structure for multiple AlGaN/GaN HSs were simulated and compared with the experimental data. As a result, the observed high- and low-energy peaks of 2DEG can be attributed to the spatially-separated 2DEG emissions formed at different AlGaN/GaN heterointerfaces.

금속 유기화학 증착기 (metal-organic chemical vapor deposition)를 이용하여 사파이어 기판 위에 $Al_{0.3}Ga_{0.7}N$/GaN 및 $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ 이종접합 구조들을 성장하고, 이들 시료의 전자와 정공들 간의 구속 효과를 조사하기 위하여 광학적, 구조적 특성을 비교하였다. 저온 (10 K) photoluminescence 실험으로부터 $Al_{0.3}Ga_{0.7}N$/GaN 단일 이종접합 구조의 경우 3.445 eV에서 단일의 이차원 전자가스 (two-dimensional electron gas; 2DEG) 관련된 발광을 관찰한 반면, $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ 다중 이종접합 구조의 경우 3.445 eV에서 뿐만 아니라, 3.42 eV에서 추가적인 2DEG 관련된 발광을 관찰 할 수 있었다. 이 두 개의 2DEG 관련 신호들의 근원을 조사하기 위하여 $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ 다중 이종접합구조에서의 에너지 밴드 구조를 이론적으로 계산하여 실험과 비교한 결과, 하나의 2DEG에 의한 서로 다른 버금띠로 부터가 아닌 다중 구조에 형성된 두 개의 2DEG로부터의 신호로 해석되었다.

Keywords

References

  1. K, Nishihori, Y. Kitaura, M. Hirose, M. iharam M. Nagaoka, and N. Uchitomi, IEEE Trans. Electron Devices. 45, 1385 (1998) https://doi.org/10.1109/16.701466
  2. K. Mochizuki, T. Okam and I. Ohbu, Electron. Lett. 37, 252 (2005) https://doi.org/10.1049/el:20010154
  3. T. O. Dickson, R. Beerkens, and S. P. Voinigescu. IEEE J. Solid-State Circuits 40, 994 (2005) https://doi.org/10.1109/JSSC.2004.842828
  4. C. H. Oxley and M. J. Uren, IEEE Trans. Electron Devices, 52, 165 (2005) https://doi.org/10.1109/TED.2004.842719
  5. J. Ao, Q. Zeng, Y. Zhao, X. Ki, W. Liu, S. Liu, and C. Liang, IEEE electron Device Lett. 21, 200 (2000) https://doi.org/10.1109/55.841295
  6. Y. G. Xie, S. Kasai, H. Takahashi, C,. Jiang, and H. Hasegawa, IEEE electron Device Lett. 22, 312 (2001) https://doi.org/10.1109/55.930675
  7. H. S. Kwack, K. S. Lee, H. J. Kim, E. Yoon, and Y. H. Cho, J. Korean. Vac. Soc. 17, 34 (2008) https://doi.org/10.5757/JKVS.2008.17.1.034
  8. S. J. Lee, J. O. Kim, C. S. Kim, S. K. Noh, and K. Y. Lim, J. Korean. Vac. Soc. 16, 27 (2007) https://doi.org/10.5757/JKVS.2007.16.1.027
  9. T. Wan, Y. Ohno, M. Lachab, D. Nakagawa, T. shirahama, S. Sakai, and H. Ohno, Appl. Phys. Lett. 74, 3531 (1999) https://doi.org/10.1063/1.124151
  10. Q. X. Zhao, J. P. Bergmanm, P. O. Holtz, B. Monemar, C. Hallin, M. Sundaram, J. L. Merz, and A. C. Gossard, Semicond. Sci. Technol. 5, 884 (1990) https://doi.org/10.1088/0268-1242/5/8/014
  11. H.-S. Kwack, Y. H. Cho, G. H. Kim, M. R. Park, D. H. Youn, S. B. Bae, K. S. Lee, J. H. Lee, J. H. Lee, T. W. Kim, T. W. Kang, and K. L Wang, Appl. Phys. Lett. 87, 041909 (2005) https://doi.org/10.1063/1.2000334
  12. S. M. Kim, H. S. Kwack, S. W. Hwang, Y. H. Cho, H. I. Cho, J. H. Leem and K. L. Wang, Phys. Stat. Sol. (c) 3, 2113 (2006) https://doi.org/10.1002/pssc.200565361
  13. H. S. Kwack, Y. H. Cho, G. H. Kim, M. R. Park, D. H. Youn, S. B. Bae, K.-S. Lee, J. H. Lee, and J. H. Lee, Phys. Stat. Sol. (c) 3, 2109 (2006) https://doi.org/10.1002/pssc.200565288
  14. V. A. Joshikin, C. A. Parker, S. M. Bedair, J. F. Muth, I. K. Shmagin, R. M. Kolbas, E. L. Piner, and R. J. Molnar, J. Appl. Phys. 86, 281 (1999) https://doi.org/10.1063/1.370727
  15. J. I. Pankove and T. D. Moustakas, Semiconductors and Semimetals, Volume 50 (1998)
  16. D. Kovalev, B. Averboukh D. Volmm and B. K. Meyer, Phys. Rev. B 54, 2518 (1996) https://doi.org/10.1103/PhysRevB.54.2518
  17. K. Fleishcer, M. Toth, M. R. Phillips, J. Zou, G. Li, and S. J. Chua, Appl. Phys. Lett. 74, 1114 (1999) https://doi.org/10.1063/1.123460
  18. F. Stern and S. D. Sarma, Phys. Rev. B 30, 840 (1984) https://doi.org/10.1103/PhysRevB.30.840
  19. H.-S. Kwack, S. B. Bae, K. S. Lee, J. H. Lee, J. H. Lee, and Y. H. Cho, Sae mulli 53, 412 (2006)