Influence of Rubiae Radix Extract on the Mechanism of Apoptosis in HL-60 Cells

천초근 추출물이 HL-60 세포주의 세포자멸사 기전에 미치는 영향

  • Choi, Ho-Seung (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Park, Jin-Mo (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Ju, Sung-Min (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Kim, Sung-Hoon (Department of Oriental Pathology, College of Oriental Medicine, Kyunghee University) ;
  • Kim, Dae-Keun (College of Pharmacy, Woosuk University) ;
  • Kim, Won-Sin (Division of Natural Science, College of Natural Sciences, Wonkwang University) ;
  • Jeon, Byung-Hun (Department of Pathology, College of Oriental Medicine, Wonkwang University)
  • 최호승 (원광대학교 한의과대학 병리학교실) ;
  • 박진모 (원광대학교 한의과대학 병리학교실) ;
  • 주성민 (원광대학교 한의과대학 병리학교실) ;
  • 김성훈 (경희대학교 한의과대학 병리학교실) ;
  • 김대근 (우석대학교 약학대학) ;
  • 김원신 (원광대학교 자연과학대학 생명과학부) ;
  • 전병훈 (원광대학교 한의과대학 병리학교실)
  • Published : 2008.06.25

Abstract

Rubiae radix belonging to the family Rubiaceae have been used in traditional medicine to blood stasis and hemostasis. In this study, we reported that methanol extract of Rubiae radix (RRME) induced apoptotic cell death through MAPKs activation in human promylocytic leukemia (HL-60) cells. The cytotoxic activity of activity of RRME in HL-60 cells was increased in a dose-dependent manner. RRME was cytotoxic to HL-60 cells, with IC50 of $8{\mu}g/mL$. Treatment of RRME to HL-60 cells showed apoptotic bodies, and the fragmentation of DNA, suggesting that these cells underwent apoptosis. Caspase-3 activity and PARP cleavage were time-dependently increased the expression of Bcl-2 and Bax. And ratio of Bax/Bcl-2 protein expression. Activation of p38 and JNK were increased 6 hr after RRME treatment in HL-60 cells, but activation of ERK was reduced 24 hr after treatment. Taken together, these results suggest that RRME induces apoptotic cell death through activation of p38 and JNK in HL-60 cells.

Keywords

References

  1. Kalechman, Y., Longo, D.L., Catane, R., Shani, A., Albeck, M. and Sredni, B. Synergistic anti-tumoral effect of paclitaxel (Taxol)+AS101 in a murine model of B16 melanoma: association with ras-dependent signal-transduction pathways. Int. J. Cancer 86: 281-288, 2000 https://doi.org/10.1002/(SICI)1097-0215(20000415)86:2<281::AID-IJC20>3.0.CO;2-X
  2. Gamet-Payrastre, L., Li, P., Lumeau, S., Cassar, G., Dupont, M.A., Chevolleau, S., Gasc, N., Tulliez, J. and Terce, F. Sulforaphane a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 60: 1426-1433, 2000
  3. Ling, Y.H., Yang, Y., Tornos, C., Singh, B. and Perez-Soler, R. Paclitaxel-induced apoptosis is associated with expression and activation of c-Mos gene product in human ovarian carcinoma SKOV3 cells. Cancer Res. 58: 3633-3640, 1998
  4. Nieves-Neira, W. and Pommier, Y. Apoptotic response to camptothecin and 7-hydroxystaurosporine (UCN-01) in the 8 human breast cancer cell lines of the NCI Anticancer Drug Screen: multifactorial relationships with topoisomerase I, protein kinase C, Bcl-2, p53, MDM-2 and caspase pathways. Int. J. Cancer 82: 396-404, 1999 https://doi.org/10.1002/(SICI)1097-0215(19990730)82:3<396::AID-IJC13>3.0.CO;2-Z
  5. Piazza, G.A., Rahm, A.L., Krutzsch, M., Sperl, G., Paranka, N.S., Gross, P.H., Brendel, K., Burt, R.W., Alberts, D.S., Pamukcu, R. and et al. Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res. 55: 3110-3116, 1995
  6. Evan, G. and Littlewood, T.A. matter of life and cell death. Science 281: 1317-1322, 1998 https://doi.org/10.1126/science.281.5381.1317
  7. Thornberry, N.A. and Lazebnik, Y. Caspases: enemies within. Science 281: 1312-1316, 1998 https://doi.org/10.1126/science.281.5381.1312
  8. Piao, W., Yoo, J., Lee, D.K., Hwang, H.J. and Kim, J.H. Induction of G(2)/M phase arrest and apoptosis by a new synthetic anti-cancer agent, DW2282, in promyelocytic leukemia (HL-60) cells. Biochem. Pharmacol. 62: 1439-1447, 2001 https://doi.org/10.1016/S0006-2952(01)00796-1
  9. Kim, R., Tanabe, K., Uchida, Y., Emi, M., Inoue, H. and Toge, T. Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy. Cancer, Chemother. Pharmacol. 50: 343-352, 2002 https://doi.org/10.1007/s00280-002-0522-7
  10. Debatin, K.M., Poncet, D. and Kroemer, G. Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene, 21: 8796-8803, 2002
  11. Kim, R., Tanabe, K., Uchida, Y., Emi, M., Inoue, H. and Toge, T. Current satus of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancenr chemotherapy. Cancer Chemother. Pharmacol. 50: 343-352, 2002 https://doi.org/10.1007/s00280-002-0522-7
  12. Hui, H., Dotta, F., Di Mario, U. and Perfetti, R. Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death. J. Cell Physiol. 200: 177-200, 2004 https://doi.org/10.1002/jcp.20021
  13. Li, P., Nijhawan, D., Budihardjo, O. and et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91: 479-489, 1997 https://doi.org/10.1016/S0092-8674(00)80434-1
  14. Finucance, D.M., Bossy-Wetzed, E., Waterhouse, N.J., Cotter, T.G. and Green D.R. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 274: 2225-2233, 1999 https://doi.org/10.1074/jbc.274.4.2225
  15. Johnson, B.W., Cepero, E. and Boise, L.H. Bcl-xL inhibits cytochrome c release but not mitochondrial depolarization during the activation of multiple death pathways by tumor necrosis factor-alpha. J. Biol. Chem. 275: 31546-31553, 2000 https://doi.org/10.1074/jbc.M001363200
  16. Green, D.R. and Reed, J.C. Mitochondria and apoptosis. Science 281: 1309-1312, 2003 https://doi.org/10.1126/science.281.5381.1309
  17. Kluck, R.M., Bossy-Wetzel, E., Green, D.R. and Newmeyer, D.D. The release of cytochrome C from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 22: 155-156, 1997
  18. Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J., Peng, T.I., Joens, D.P. and Wang, X. Prevention of apoptosis by Bcl-2: release of cytochrome C form mitochondria blocked. Science 275: 1129-1132, 1997 https://doi.org/10.1126/science.275.5303.1129
  19. Luo, X., Budihardjo, I., Zou, H., Slaugheter, C. and Wang, X. Bcl-2 interaction protein, mediates cytochrome C release from mitochondria in response to activation of cell surface death receptor. Cell 94: 481-490, 1998 https://doi.org/10.1016/S0092-8674(00)81589-5
  20. Cross, T.G., Scheel-Toellner, D., Henriquez, N.V., Deacon, E., Salmon, M. and Lord, J.M. Serine/threonine protein kinases and apoptosis. Exp. Cell Res. 256: 34-41, 2000 https://doi.org/10.1006/excr.2000.4836
  21. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K. and Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22: 153-183, 2001 https://doi.org/10.1210/er.22.2.153
  22. Cobb, M.H. MAP kinase pathways. Prog. Biophys. Mol. Biol. 71: 479-500, 1999 https://doi.org/10.1016/S0079-6107(98)00056-X
  23. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J. and Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326-1331, 1995 https://doi.org/10.1126/science.270.5240.1326
  24. Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 103: 239-252, 2000 https://doi.org/10.1016/S0092-8674(00)00116-1
  25. 신민교. 原色臨床本草學. 發行所 南山堂, pp 435-436, 1986
  26. 신민교, 이상인 외 14인. 本草學. 圖書出版 永林社, pp 402-403, 1999
  27. 辛佶求. 申氏本草學<各論>. 壽文社, pp 556-557, 1979
  28. 李尙仁. 本草學. 醫藥社, pp 451-452, 1975
  29. 이재희. 圖說韓方 藥理藥能의 臨床應用. 學林社, p 544, 1985
  30. 李時珍. 本草綱目, 中國中醫藥出版社, p 564, 1998
  31. 陸昌洙. 現代本草學, 高文社, p 362, 1972
  32. 이상인, 안덕균, 신민교, 노승현, 이영종, 김선희. 漢藥臨床應用, 成輔社, pp 255-256, 1986
  33. 辛民敎. 原色本草維新, 慶苑文化社, pp 168-169, 1979
  34. 田代華 主編. 實用中藥辭典. 人民衛生出版社, p 1259, 2002
  35. 國家中醫藥管理局. 中華本草, 上海科學技術出版社, p 1542, 1998
  36. 季宇杉 主編. 抗癌中藥藥理與應用. 黑龍江科學記述出版社, p 883, 1999
  37. 鄭虎古 等 主編. 中藥現代硏究與應用(第四卷). 北京學苑出版社, p 3066, 1998
  38. 王浴生 主編. 中藥藥理與應用. 人民衛生出版社, p 751, 1983
  39. Tsiftsoglou, A.S., Pappas, I.S. and Vizirianakis, I.S. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol. Ther. 100: 257-290, 2003 https://doi.org/10.1016/j.pharmthera.2003.09.002
  40. Finucane, D.M., Bossy-Wetzel, E., Waterhouse, N.J., Cotter, T.G., Green, D.R. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 274: 2225-2233, 1993 https://doi.org/10.1074/jbc.274.4.2225
  41. Perlman, H., Zhang, X., Chen, M.W., Walsh, K. and Buttyan, R. An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death. Differ. 6: 48-54, 1999 https://doi.org/10.1038/sj.cdd.4400453
  42. Hsu, Y.T. and Youle, R.J. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. 273: 10777-10783, 1998 https://doi.org/10.1074/jbc.273.17.10777
  43. Murphy, K.M., Streips, U.N. and Lock, R.B. Bax membrane insertion during Fas(CD95)-induced apoptosis precedes cytochrome c release and is inhibited by Bcl-2. Oncogene 18: 5991-5999, 1999 https://doi.org/10.1038/sj.onc.1203001
  44. Ruffolo, S.C., Breckenridge, D.G., Nguyen, M., Goping, I.S., Gross, A., Korsmeyer, S.J., L, H., Yuan, J., Shore, G.C. BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ. 7: 1101-1108, 2000 https://doi.org/10.1038/sj.cdd.4400739
  45. Chan-Hui, P.Y. and Weaver, R. Human mitogen-activated protein kinase kinase kinase mediates the stress-induced activation of mitogen-activated protein kinase cascades. Biochem. J. 15: 599-609, 1998
  46. Cobb, M.H. Goldsmith EJ. How MAP kinases are regulated. J. Biol. Chem. 270: 14843-14846, 1995 https://doi.org/10.1074/jbc.270.25.14843
  47. Chang, L. and Karin, M. Mammalian MAP kinase signalling cascades. Nature 410: 37-40, 2001 https://doi.org/10.1038/35065000
  48. Ichijo, H. Differentiation of the chick retinotectal topographic map by remodeling in specificity and refinement in accuracy. Brain Res. Dev. Brain Res. 117: 199-211, 1999 https://doi.org/10.1016/S0165-3806(99)00126-1
  49. Johnson, G.L. and Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-1912, 2002 https://doi.org/10.1126/science.1072682
  50. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J.. and Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326-1331, 1995 https://doi.org/10.1126/science.270.5240.1326
  51. Okuno, T., Matsuoka, M., Sumizawa, T., Igisu, H. Involvement of the extracellular signal-regulated protien kinase pathway in phosphorylation of p53 protein and exerting cytotoxicity in human neuroblastoma cells (SH-SY5Y) exposed to acrylamide. Arch. Toxicol 80: 146-153, 2006 https://doi.org/10.1007/s00204-005-0022-8