Production of Flavonoid Aglycone from Korean Glycyrrhizae Radix by Biofermentation Process

발효법제에 의한 감초의 Flavonoid 무배당체의 생산

  • Na, In-Su (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Park, Min-Ju (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Noh, Chong-Hoon (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Min, Jin-Woo (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Bang, Myun-Ho (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Yang, Deok-Chun (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University)
  • 나인수 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 박민주 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 노종훈 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 민진우 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 방면호 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 양덕춘 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행)
  • Published : 2008.06.25

Abstract

The GUE6 was isolated from ethyl acetate fraction of Glycyrrhiza uralensis and confirmed as liquiritin. Liquiritin(LQ) treated with ${\beta}$-glucosidase from plant(Prunus dulcis) and bacteria(Lactobacillus pentosus) crude enzymes. The ${\beta}$-glucosidase activities of crude enzymes were 229.8 U/g(Prunus dulcis) and 19.17 U/ml(Lactobacillus pentosus), respectively. Liquiritin(LQ) biotransformed into liquiritigenin(LQG) by ${\beta}$-glucosidase from crude enzymes. The EtOAc fraction(GUE6) and the converted product were identified as liquiritin and liquiritigenin, by TLC chromatogram, $^{1}H$-NMR and $^{13}C$-NMR.

Keywords

References

  1. 중약대사전편찬위원회. 완역 중약대사전. 도서출판 정담, pp 66-78, 1999
  2. 홍남두, 김남재. 한약의 품질관리. 신일상사, p 274, 2004
  3. 최혁재, 이우정, 박성환, 송보완, 김동현, 김남재. 한약수치에 관한 연구 - 초감초 제법의 표준화 및 규격화. 생약학회지 36(3):209-219, 2005
  4. Kim, D.H., Jang, I.S. Bacteroides J-37, a human intestinal bacterium, produces $\beta$-glucuronidase. Biol. Pharm. Bull. 20: 834-847, 1997 https://doi.org/10.1248/bpb.20.834
  5. Kim, D.H., Jang, I.S., Lee, H.K., Jung, E.A., Lee, K.Y. Metabolism of glycyrrhizin and baicalin by human intestinal bacteria. Arch. Pharm. Res. 19: 292-296, 1996 https://doi.org/10.1007/BF02976243
  6. Kim, D.H., Lee, S.W., Han, M.J. Biotransformation of glycyrrhizin to 18-glycyrrhetinic acid-3-O-$\beta$-D-glucuronide by Streptococcus LJ-22, a human intestinal bacterium. Biol. Pharm. Bull. 22: 320-322, 1999a https://doi.org/10.1248/bpb.22.320
  7. Kim, D.H., Kim, N.J., Bae, E.A., Han, M.J. Metabolism of glycyrrhizin in polyprescriptions containing Glycyrrhizae Radix by human lntestinal bacteria and their inhibitory effects on some enzymes. Kor. J. Pharmacogn 30(3):269-274, 1999b
  8. Izumi, T., Piskula, M.K., Osawa, S., Obata, A., Tobe, K., Saito, M., Kataoka, S., Kubota Y., Kikuchi, M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130(7):1695-1699, 2000 https://doi.org/10.1093/jn/130.7.1695
  9. Nemeth, K., Plumb, G.W., Berrin, J.G., Juge, N., Jacob, R., Naim, H.Y., Williamson, G., Swallow, D.M., Kroon, P.A. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr. 42(1):29-42, 2003 https://doi.org/10.1007/s00394-003-0397-3
  10. 박창호. 한약재 가공실험 및 이론. 청문각, p 139, 2004
  11. Yang, S.O., Chang, P.S., Lee, J.H. Characterization of isoflavone profiles in soy cookies using $\beta$-glucosidase-containing almond powder. Korean J. Food Sci. Technol. 38(4):461-468, 2006
  12. 안은영, 신동화, 백남인, 오진아. 감초로부터 항균활성 물질의 분리 및 구조 동정. 한국식품과학회지 30(3):680-687, 1998
  13. 안덕균. 한국본초도감. 교학사, 서울, p 662, 2000
  14. 박종철, 신동원. 한약산업. 도서출판 신일상사, 서울, p 84, 2006
  15. 동의학연구소 편저. 동약법제. 여강출판사, 서울, pp 61-64, 1994
  16. 서부일, 최호영. 임상한방본초학. 학창사, 서울, 2004
  17. 김남재, 진영호, 홍남두. 한약수치에 관한 연구(4) - 수치에 의한 감초 중 Glycyrrhizin의 물리화학적 변화. 생약학회지 26(1):31-39, 1995
  18. 김남재, 홍남두. 한약수치에 관한 연구(제5보) - 수치에 의한 감초의 성분변화 및 생리활성- 생약학회지, 27(3):196-296, 1996
  19. Kim, S.I., Kim, J.E., So, J.H. Rhee, I.K., Chung, S.K. Lee, K.B., Yoo, Y.C., Song, K.S. Changes in liquiritigenin contents in licorice extract treated by the crude enzyme extract from Aspergillus kawachii. Kor. J. Pharmacogn 35(4):309-314, 2004
  20. Hwang, J.O., Ahn, D.K., Woo, E.R., Kim, H.J., Seo, S.H., Park, H. Studies on the antibacterial constituents of Baenongtang. Natural Product Sciences 4: 130-135, 1998
  21. Pan, X., Kong, L.D., Zhang, Y., Cheng, C.H., Tan, R.X. In vitro inhibition of rat monoamine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Acta Pharmacologica Sinica 21: 949-953, 2000
  22. Hatano, T., Fukuda, T., Liu, Y., Noro, T., Okuda, T. Phenolic constituents of licorice. IV. Correlation of phenolic constituents and licorice specimens from various source, and inhibitory effects of licorice extracts on xanthine oxidase and monoamine oxidase. Yakugaku Zasshi 111: 311-321, 1991 https://doi.org/10.1248/yakushi1947.111.6_311
  23. Konoshima, T., Takasaki, M., Kozuka, M., Inada, A., Nakanishi, T., Tokuda, H., Matsumoto, T. Studies on inhibitors of skin tumor promotion(V). Inhibitory effects of flavonoids of Epstein-Barr virus activation. II. Shoyakugaku Zasshi 43: 135-141, 1989
  24. Kim, S.C., Byun, S.H., Yang, C.H., Kim, C.Y., Kim, J.W., Kim, S.G. Cytoprotective effects of Glycyrrhizae radix extract and its active component liquiritigenin against cadmium-induced toxicity (effects on bad translocation and cytochrome c-mediated PARP cleavage). Toxicology 197: 239-251, 2004 https://doi.org/10.1016/j.tox.2004.01.010
  25. Park, E.Y., Park, J.S., Lee, J.R., Jee, S.Y., Byun, S.H., Kim, S.C. Cytoprotective effects of liquiritigenin, a component of licorice, against lead-induced cytotoxicity in PC-12 cells. Kor. J. Herbology 22(2):17-24, 2007