Characterization of Ionic Currents in Human Neural Stem Cells

  • Lim, Chae-Gil (Department of Physiology, College of Medicine, Dankook University, Department of Physical Therapy, Gachon University of Medicine and Science Zucheon) ;
  • Kim, Sung-Soo (Department of Anatomy, Ajou University School of Medicine) ;
  • SuhKim, Hae-Young (Department of Anatomy, Ajou University School of Medicine) ;
  • Lee, Young-Don (Department of Anatomy, Ajou University School of Medicine) ;
  • Ahn, Seung-Cheol (Department of Physiology, College of Medicine, Dankook University)
  • Published : 2008.08.31

Abstract

The profile of membrane currents was investigated in differentiated neuronal cells derived from human neural stem cells (hNSCs) that were obtained from aborted fetal cortex. Whole-cell voltage clamp recording revealed at least 4 different currents: a tetrodotoxin (TTX)-sensitive $Na^+$ current, a hyperpolarization-activated inward current, and A-type and delayed rectifier-type $K^+$ outward currents. Both types of $K^+$ outward currents were blocked by either 5 mM tetraethylammonium (TEA) or 5 mM 4-aminopyridine (4-AP). The hyperpolarization-activated current resembled the classical $K^+$ inward current in that it exhibited a voltage-dependent block in the presence of external $Ba^{2+}$ (30 ${\mu}$M) or $Cs^+$ (3${\mu}$M). However, the reversal potentials did not match well with the predicted $K^+$ equilibrium potentials, suggesting that it was not a classical $K^+$ inward rectifier current. The other $Na^+$ inward current resembled the classical $Na^+$ current observed in pharmacological studies. The expression of these channels may contribute to generation and repolarization of action potential and might be regarded as functional markers for hNSCs-derived neurons.

Keywords

References

  1. Akesson E, Piao JH, Samuelsson EB, Holmberg L, Kjaeldgaard A, Falci S, Sundstrom E, Seiger A. Long-term culture and neuronal survival after intraspinal transplantation of human spinal cord- derived neurospheres. Physiol Behav 92: 60-66, 2007 https://doi.org/10.1016/j.physbeh.2007.05.056
  2. Artiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi ME. Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells 25: 1136-1144, 2007 https://doi.org/10.1634/stemcells.2006-0466
  3. Balasubramaniyan V, de Haas AH, Bakels R, Koper A, Boddeke HW, Copray JC. Functionally deficient neuronal differentiation of mouse embryonic neural stem cells in vitro. Neurosci Res 49: 261-265, 2004 https://doi.org/10.1016/j.neures.2004.02.010
  4. Butt AM, Kalsi A. Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med 10: 33-44, 2006 https://doi.org/10.1111/j.1582-4934.2006.tb00289.x
  5. Buzanska L, Jurga M, Domanska-Janik K. Neuronal differentiation of human umbilical cord blood neural stem-like cell line. Neurodegener Dis 3: 19-26, 2006 https://doi.org/10.1159/000092088
  6. Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu CP, Rao MS. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 172: 383-397, 2001 https://doi.org/10.1006/exnr.2001.7832
  7. Cho T, Bae JH, Choi HB, Kim SS, McLarnon JG, Suh-Kim H, Kim SU, Min CK. Human neural stem cells: electrophysiological properties of voltage-gated ion channels. Neuroreport 13: 1447-1452, 2002 https://doi.org/10.1097/00001756-200208070-00020
  8. D'Ascenzo M, Piacentini R, Casalbore P, Budoni M, Pallini R, Azzena GB, Grassi C. Role of L-type $Ca^2+$ channels in neural stem/progenitor cell differentiation. Eur J Neurosci 23: 935-944, 2006 https://doi.org/10.1111/j.1460-9568.2006.04628.x
  9. Doupnik CA, Davidson N, Lester HA. The inward rectifier potassium channel family. Curr Opin Neurobiol 5: 268-277, 1995 https://doi.org/10.1016/0959-4388(95)80038-7
  10. Flax JD, Aurora S, Yang C, Simonin C, Willis AM, Billinghurst LL, Jendoubi M, Sidman RL, Wolfe JH, Kim SU, Snyder EY. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16: 1033-1039, 1998 https://doi.org/10.1038/3473
  11. Flynn ER, McManus CA, Bradley KK, Koh SD, Hegarty TM, Horowitz B, Sanders KM. Inward rectifier potassium conductance regulates membrane potential of canine colonic smooth muscle. J Physiol 518(Pt 1): 247-256, 1999 https://doi.org/10.1111/j.1469-7793.1999.0247r.x
  12. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77: 577-588, 2007 https://doi.org/10.1095/biolreprod.106.055244
  13. Johnson MA, Weick JP, Pearce RA, Zhang SC. Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci 27: 3069- 3077, 2007 https://doi.org/10.1523/JNEUROSCI.4562-06.2007
  14. Li GR, Sun H, Deng X, Lau CP. Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells 23: 371-382, 2005 https://doi.org/10.1634/stemcells.2004-0213
  15. Mareschi K, Novara M, Rustichelli D, Ferrero I, Guido D, Carbone E, Medico E, Madon E, Vercelli A, Fagioli F. Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag $K^+$ channel types. Exp Hematol 34: 1563-1572, 2006 https://doi.org/10.1016/j.exphem.2006.06.020
  16. Moe MC, Westerlund U, Varghese M, Berg-Johnsen J, Svensson M, Langmoen LA. Development of neuronal networks from single stem cells harvested from the adult human brain. Neurosurgery 56: 1182-1188, 2005a https://doi.org/10.1227/01.NEU.0000159881.09663.6D
  17. Moe MC, Varghese M, Danilov AI, Westerlund U, Ramm-Pettersen J, Brundin L, Svensson M, Berg-Johnsen J, Langmoen IA. Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. Brain 128: 2189-2199, 2005b https://doi.org/10.1093/brain/awh574
  18. Murata Y, Fujiwara Y, Kubo Y. Identification of a site involved in the block by extracellular Mg(2+) and Ba(2+) as well as permeation of K(+) in the Kir2.1 K(+) channel. J Physiol 544: 665-677, 2002 https://doi.org/10.1113/jphysiol.2002.030650
  19. Nichols CG, Lopatin AN. Inward rectifier potassium channels. Ann Rev Physiol 47: 11-39, 1997
  20. Park KS, Jung KH, Kim SH, Kim KS, Choi MR, Kim Y, Chai YG. Functional expression of ion channels in mesenchymal stem cells derived from umbilical cord vein. Stem Cells 25: 2044-2052, 2007 https://doi.org/10.1634/stemcells.2006-0735
  21. Piper DR, Mujtaba T, Rao MS, Lucero MT. Immunocytochemical and physiological characterization of a population of cultured human neural precursors. J Neurophysiol 84: 534-548, 2000 https://doi.org/10.1152/jn.2000.84.1.534
  22. Sun W, Buzanska L, Domanska-Janik K, Salvi RJ, Stachowiak MK. Voltage-sensitive and ligand-gated channels in differentiating neural stem-like cells derived from the nonhematopoietic fraction of human umbilical cord blood. Stem Cells 23: 931-945, 2005 https://doi.org/10.1634/stemcells.2004-0316
  23. Thompson GA, Leyland ML, Ashmole I, Sutcliffe MJ, Stanfield PR. Residues beyond the selectivity filter of the K+ channel kir2.1 regulate permeation and block by external Rb+ and Cs+. J Physiol 526: 231-240, 2000 https://doi.org/10.1111/j.1469-7793.2000.00231.x
  24. Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, Van der Kooy D. Is there a neural stem cell in the mammalian forebrain- Trends Neurosci 19: 387-393, 1996 https://doi.org/10.1016/S0166-2236(96)10035-7
  25. Westerlund U, Moe MC, Varghese MM, Berg-Johnsen J, Ohlsson M, Langmoen IA, Svensson M. Stem cells from the adult human brain develop into functional neurons in culture. Exp Cell Res 289: 378-383, 2003 https://doi.org/10.1016/S0014-4827(03)00291-X
  26. Zahanich I, Graf EM, Heubach JF, Hempel U, Boxberger S, Ravens U. Molecular and functional expression of voltage-operated calcium channels during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 20: 1637-1646, 2005 https://doi.org/10.1359/JBMR.050521