DOI QR코드

DOI QR Code

Development of High Density Inductively Coupled Plasma Sources for SiH4/O2/Ar Discharge

고밀도 유도 결합 플라즈마 장치의 SiH4/O2/Ar 방전에 대한 공간 평균 시뮬레이터 개발

  • Bae, S.H. (School of Electrical and Electronic Engineering, Chungbuk National University) ;
  • Kwon, D.C. (School of Electrical and Electronic Engineering, Chungbuk National University) ;
  • Yoon, N.S. (School of Electrical and Electronic Engineering, Chungbuk National University)
  • Published : 2008.09.30

Abstract

A space averaged $SiH_4/O_2/Ar$ simulator for the high density inductively coupled plasma sources for $SiH_4/O_2/Ar$ discharge is developed. The developed simulator uses space averaged fluid equations for electrons, positive ions, negative ions, neutral species, and radicals in $SiH_4/O_2/Ar$ plasma discharge, and the electron heating model including the anomalous skin effect. Using the developed simulator, the dependency of the density of charged particles, neutral particles, and radicals, the electron temperature, the plasma resistance, and the power absorption coefficient for the RF power and pressure is calculated.

고밀도 유도결합 플라즈마 장치의 $SiH_4/O_2/Ar$방전에 대한 공간 평균 시뮬레이터를 제작하였다. 제작된 시뮬레이터는 $SiH_4/O_2/Ar$ 플라즈마 방전에서 발생되는 전자, 양이온, 음이온, 중성종, 그리고 활성종들에 대해 공간 평균한 유체 방정식을 기반으로 하고 있으며, 전자가열 모델은 anomalous skin effect를 고려한 파워 흡수 모델을 적용하여 전자가 흡수하는 고주파 파워량을 결정하였다. 완성된 시뮬레이터에서 RF-파워와 압력 변화에 대한 하전입자, 중성종, 활성종들의 밀도 변화 및 전자 온도 의존성을 계산하였다.

Keywords

References

  1. N. S. Yoon, S. M. Hwang and D. I. Choi, Phys. Rev .E, 55, 7536(1997) https://doi.org/10.1103/PhysRevE.55.7536
  2. N. S. Yoon, S. S. Kim, C. S. Chang and Duk-In Choi, J. Korean Phys Soc. 28, 2, pp. 172(1995)
  3. S. S. Kim, S. Hamaguchi, N. S. Yoon, C. S. Chang, Y. D. Lee and S. H. Ku, Physics of Plasmas, 8, 1384(2001) https://doi.org/10.1063/1.1350671
  4. M. A. Lieberman and Lichtenberg A. J, Principles of Plasma Discharges and Material Processing (John Wiley & Sons, Inc., Hoboken, New Jersey, 2005), pp. 333-335
  5. E. Meeks, R. S. Larson, P. Ho, S. M. Han, E. Edelberg, E. Aydil, and C. Apblett J. Vac. Sci. Technol. A 16, 2, Mar(1998)
  6. J. T. Gudmundsson, I. G. Kouznetsov, K. K Patel and M. A. Lieberman J. Phys. D Appl. Phys. 34, 1100(2001) https://doi.org/10.1088/0022-3727/34/7/312
  7. M. Baeva, X. Luo, B Pfelzer, T Repsilber and J. Uhlenbusch. Plasma Source Sci. Technol 9, 128 (2000) https://doi.org/10.1088/0963-0252/9/2/305
  8. D. Shane Stafford and Mark J. Kushner J. Appl. phys., 96, 51. Sep(2004)
  9. Lee C and Liberman M A, J. Vac. Sci. Technol. A 13, 368(1995) https://doi.org/10.1116/1.579366
  10. T Kimura, A J Lichtenberg and M A Lieberman Plasma Source Sci. Technol. 10(2001)430-439
  11. 김형용,윤남식,권득철,김정형,정광화,신용현,한국 전기전자 재료학회(2005)
  12. 김형용, 윤남식, 권득철, 한국 통신학회(2006)
  13. 김형용,민경민,권득철,윤남식,대한전자공학회 및 대한전기학회 충북지회(2004)

Cited by

  1. Modeling of silicon nanoparticle formation in inductively coupled plasma using a modified collision frequency function vol.28, pp.11, 2014, https://doi.org/10.1007/s12206-014-1036-z
  2. Numerical modeling of SiH4 discharge for Si thin film deposition for thin film transistor and solar cells vol.519, pp.20, 2011, https://doi.org/10.1016/j.tsf.2011.04.062
  3. Numerical Investigation of Ion and Radical Density Dependence on Electron Density and Temperature in Etching Gas Discharges vol.20, pp.6, 2011, https://doi.org/10.5757/JKVS.2011.20.6.422
  4. Numerical Modeling of Very High Frequency Multi Hollow Cathode PECVD vol.19, pp.5, 2010, https://doi.org/10.5757/JKVS.2010.19.5.331