Effects on Redox Status and NF-${\kappa}B$ Signaling by Ojunghwan

오정환(五精丸)이 ob/ob mouse에서 Redox Status 및 NF-${\kappa}B$ Signaling에 미치는 영향

  • Baek, Ki-Beom (Department of Internal Medicine, College of Korean Medicine, Dongguk University) ;
  • Jeong, Ji-Cheon (Department of Internal Medicine, College of Korean Medicine, Dongguk University)
  • 백기범 (동국대학교 한의과대학 내과학교실) ;
  • 정지천 (동국대학교 한의과대학 내과학교실)
  • Published : 2008.10.25

Abstract

Peroxynitrite ($ONOO^-$), superoxide anion radical (${\cdot}\;{O_2}^-$) and nitric oxide (NO) are cytotoxic because they can oxidize several cellular components such as proteins, lipids and DNA. They have been implicated in the aging processes, and age-related diseases such as Alzheimer's disease, rheumatoid arthritis, cancer, diabetes, obesity and atherosclerosis. The aim of this study was to investigate the effects of Ojunghwan on the generation of peroxynitrite ($ONOO^-$), nitric oxide (NO) and superoxide anion radical (${\cdot}\;{O_2}^-$), and on the expression of $NF-{\kappa}B$-dependent inflammatory proteins in ob/ob mice. Mice were grouped and treated for 5 weeks as follows. Both the normal lean (C57/BL6J black mice) and control obese (ob/ob mice) groups have received the standard chow. The experimental groups were fed with a diet of chow supplemented with 30 and 90 mg Ojung-hwan per 1 kg of body weight for 14 days. For this study, the fluorescent probes, namely 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein (DAF-2) and dihydrorhodamine 123 (DHR 123) were used. Western blot was performed using anti-phospho $I{\kappa}B-{\alpha}$, $anti-IKK-{\alpha}$, $anti-NF-{\kappa}B$ (p50, p65), anti-COX-2, anti-iNOS, anti-VCAM-1 and anti-MMP-9 antibodies, respectively. Ojunghwan inhibited the generation of $ONOO^-$, NO and ${\cdot}\;{O_2}^-$ in the lipopolysaccharide (LPS)-treated mouse kidney postmitochondrial fraction in vitro. The generation of $ONOO^-$, NO, ${\cdot}\;{O_2}^-$ and $PGE_2$ were inhibited in the Ojunghwan-administered ob/ob mice groups. The GSH/GSSG ratio was decreased in the ob/ob mice, whereas that were improved in the Ojunghwan-administered groups. Ojunghwan inhibited the expression of $phospho-I{\kappa}B-{\alpha}$, $IKK-{\alpha}$, $NF-{\kappa}B$ (p50, p65), COX-2, iNOS, VCAM-1 and MMP-9 genes. These results suggest that Ojunghwan is an effective scavenger of $ONOO^-$, ${\cdot}\;{O_2}^-$, NO and $PGE_2$, and has an inhibitory effect on the expression of $NF-{\kappa}B$-dependent inflammatory genes in ob/ob mice. Therefore, Ojunghwan might be used as a potential therapeutic drug against the inflammation process and inflammation- related diseases.

Keywords

References

  1. De Martinis, M., Franceschi, C., Monti, D., Ginaldi, L. Inflamma-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett. 579(10):2035-2039, 2005 https://doi.org/10.1016/j.febslet.2005.02.055
  2. Ginaldi, L., De Martinis, M., Monti, D., Franceschi, C. Chronic antigenic load and apoptosis in immunosenescence. trends Immunol. 26: 79-84, 2005 https://doi.org/10.1016/j.it.2004.11.005
  3. Chung, H.Y., Kim, H.J., Jung, K.J., Yoon, J.S., Yoo, M.A., Kim, K.W., Yu, B.P. The inflammatory process in aging. Reviews in Clinical Gerontology. 10: 207-222, 2000 https://doi.org/10.1017/S0959259800010327
  4. Chung, H.Y., Kim, H.J. and Kim, J.W. The inflammation hypothesis of aging : Molecular modulation by calorie restriction. Ann N Y Acad Sci. 928: 327-335, 2001 https://doi.org/10.1111/j.1749-6632.2001.tb05662.x
  5. Kim, H.J., Kim, K.W., Yu, B.P., Chung, H.Y. The effect of age on cyclooxygenase-2 gene expression : NF-${\kappa}B$ activation and I${\kappa}B{\alpha}$ degradation. Free Radical Biol Med. 28: 683-692, 2000 https://doi.org/10.1016/S0891-5849(99)00274-9
  6. Luo, S.F., Wang, C.C., Chien, C.S., Hsiao, L.D., Yang, C.M. Induction of cyclooxygenase-2 by lipopolysaccharide in canine tracheal smooth muscle cells : invilvement of p42/p44 and p38 mitogen-activated protein kinases and nuclear factor-kappa B pathways. Cell Signal. 15: 497-509, 2003 https://doi.org/10.1016/S0898-6568(02)00135-3
  7. Ghosh, S., May, M.J., Kopp, E.B. NF-$\kappa$B and Rel proteins : Evolutionarity conserved mediators of immune responses. Annu Rev Immunol. 16: 225-260, 1998 https://doi.org/10.1146/annurev.immunol.16.1.225
  8. Korhonen, P., Helenius, M., Salminen, A. Age-related changes in the regulation of transcription factor NF-kappa B in rat brain. Neurosci Lett. 225: 61-64, 1997 https://doi.org/10.1016/S0304-3940(97)00190-0
  9. Halushka, P.V., Mais, D.E., Mayeux, P.R. and Morinelli, T.A. Thromboxane, prostaglandin and leukotriene receptors. Annu Rev Pharmacol Toxicol. 29: 213-239, 1989 https://doi.org/10.1146/annurev.pa.29.040189.001241
  10. Martel-Pelletier, J., Pelletier, J.P., Fahmi, H. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin Arthritis Rheum. 33(3):155-167, 2003 https://doi.org/10.1016/S0049-0172(03)00134-3
  11. 趙佶. 聖濟總錄. 北京, 人民衛生出版社, p 2263, 2002
  12. 王毅, 靳長金, 朱君波 編著. 益壽效方 120. 北京, 中國醫藥科技出版社, pp 31-32, 95, 1989
  13. 何紹奇, 宋乃光 編著. 中老年保健養生方. 北京, 學苑出版社. pp 208-209, 219-220, 2002
  14. 許浚. 東醫寶鑑. 서울, 南山堂, p 78, 1981
  15. 朱橚. 普濟方. 서울, 翰成社, p 3339, 1995
  16. Kooy, N.W., Royall, J.A., Ischiropoulos, H., Beckman, J.S. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Res Commun. 16: 149-156, 1994
  17. Nagata, N., Momose, K., Ishida, Y. Inhibitory effects of catecholamines and anti-oxidants on the fluorescence reaction of 4,5-diaminofluorescein, DAF-2, a novel indicator of nitric oxide. J Biochem Tokyo. 125: 658-661, 1999 https://doi.org/10.1093/oxfordjournals.jbchem.a022333
  18. Cathcart, R., Schwiers, E., Ames, B.N. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein fluorescent assay. Anal Biochem. 134: 111-116, 1983 https://doi.org/10.1016/0003-2697(83)90270-1
  19. Gaitonide, M.K. A spectrophotometric method for the direct determination of cystein in the presense of other naturally occuring amino acid. Biochem. J. 104: 627, 1967 https://doi.org/10.1042/bj1040627
  20. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. Protein measurement with folin phenol reagent. J Biol Chem. 193: 265-275, 1951
  21. Chung, H.Y., Kim, H.J., Shim, K.H., Kim, K.W. Dietary modulation of prostanoid synthesis in the aging process : role of cyclooxygenase-2. Mech Ageing Dev. 111: 97-106, 1999 https://doi.org/10.1016/S0047-6374(99)00061-5
  22. Maziere, C., Auclair, M., Djavaheri-Mergny, M., Packer, L., Maziere, J.C. Oxidized low density lipoprotein induces activation of the transcription factor NF-$\kappa$B in fibroblasts, endothelial and smooth muscle cells. Biochem Mol Biol Int. 39: 1201-1207, 1996
  23. Kranzhofer, R., Schmidt, J., Pfeiffer, C.A., Hagl, S., Libby, P., Kubler, W. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 19: 1623-1629, 1999 https://doi.org/10.1161/01.ATV.19.7.1623
  24. 李尙仁. 本草學. 서울, 醫藥社, pp 71, 74, 118-119, 207, 1981
  25. 吳儀洛. 本草從新. 上海, 上海科學技術出版社, pp 22-23, 67, 180, 1982
  26. 王其飛 外. 中醫長壽學. 遼寧, 遼寧科學技術出版社, pp 53-54, 327-329, 331-334, 1989
  27. 王浴生. 中藥藥理與應用. 北京, 人民衛生出版社, pp 741-743, 998-1000, 1983
  28. Mordes, J.P. and Rossini, A.A. Animal models of diabetes mellitus. Am J Med. 70(2):353-360, 1981 https://doi.org/10.1016/0002-9343(81)90772-5
  29. Eleazar, S. Animal models of non-insulin-dependent diabetes. Diabetes metabolism reviews. 8(3):179-208, 1992 https://doi.org/10.1002/dmr.5610080302
  30. Cai, H., Harrison, D.G. Endothelial dysfunction in cardiovascular diseases ; the role of oxidant stress. Circ Res. 87: 840-844, 2000 https://doi.org/10.1161/01.RES.87.10.840
  31. Matsubara, T., Ziff, M. Increased syperoxide anion release from human endothelial cells in response to cytokines. J Immunol. 137: 3295-298, 1986
  32. Vendemiale, G., Altomare, E., Grattagliano, I., Albano, O. Increased plasma levels of glutathione and malondialdehyde after avute ethanol ingestion in humans. J hepatol. 9: 359, 1989 https://doi.org/10.1016/0168-8278(89)90146-3
  33. Chung, H.Y., Soung, D.Y., Kim, A.R., Choi, H.R., Kim, H.J., Choi, J.S., Yang, R., Lee, K.H. and Yu, B.P. Generation, Toxicity and Scavenging of ONOO-: Its Involvement in the Aging Process. Kor J Gerontol. 10: 46-59, 2000
  34. Groszmann, R.J. Hyperdynamic state in chronic liver disease. J Hepatol. 17(2):S38-40, 1993 https://doi.org/10.1016/S0168-8278(05)80454-4
  35. Tsujii, M., Kawano, S., Tsuji, S., Sawaoka, H., Hori, M., DuBois, R.N. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 93(5):705-716, 1998 https://doi.org/10.1016/S0092-8674(00)81433-6
  36. Chung, H.Y., Kim, H.J., Kim, K.W., Chio, J.S., Yu, B.P. Molecular inflammation hypothesis of aging based on the anti-aging mechanism of calorie restriction. Micro Res Techinq. 59: 264-272, 2002 https://doi.org/10.1002/jemt.10203
  37. Fries, J.W.U., Williams, A.J., Atkins, R.C., Neman, W., Lipscomb, M.F., Collins, T. Expression of VCAM-1 and E-selectin in an in vivo model of endothelial activation. Am J Pathol. 143: 725-737, 1993
  38. Baran, D., Vendeville, B., Ogborn, M., Katz, N. Cell adhesion molecule expression in murine lupus-like nephritis induced by lipopolysaccharide. Nephron. 84: 167-176, 2000 https://doi.org/10.1159/000045565
  39. Lakshminarayanan, V., Beno, D.W., Costa, R.H., Roebuck, K.A. Differential regulation of interleukine-8 and intercellular adhesion molecule-1 by $H_2O_2$ and tumor necrosis factor-alpha in endothelial and epithelial cells. J Biol Chem. 272(52):32910-32918, 1997 https://doi.org/10.1074/jbc.272.52.32910
  40. Woessner, J.F. and Nagase, H. Matrix metalloproteinases and Timps. Oxford, Oxford university Press. pp 1-10, 2000
  41. McCawley, L.J. and Metrisian, L.M. Matrix metalloproteinases : They're not just for matrix anymore! Curr Opin Cell Biol. 13(5):534-540, 2001 https://doi.org/10.1016/S0955-0674(00)00248-9
  42. Liu, K.J., Rosenberg, G.A. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med. 39: 71-80, 2005 https://doi.org/10.1016/j.freeradbiomed.2005.03.033