Effect of Low Intensity Pulsed Ultrasound in Rat Chondrocyte

저강도 맥동성 초음파 적용이 관절연골세포에 미치는 영향

  • Published : 2008.10.25

Abstract

Low intensity pulsed ultrasound(LIPUS) is known to accelerate bone regeneration, but the precise cellular signaling mechanism is still unclear. The purpose if this study was to determine the effect of LIPUS on the signaling mechanism of rat chondrocyte. In the explant culture condition, there was inhibition effect of 1 $W/cm^2$ intensity LIPUS on chondrocytes proliferation but chondrocytes proliferation was increased at 0.25 $W/cm^2$ intensity. In addition, western blot analysis of MAPKs showed that LIPUS increased ERK1/2 activity from the 10 min treatment of LIPUS. Hydrogen peroxide($H_2O_2$), resulted in a time- and dose-dependent cell proliferation, which was largely attributed to apoptosis. $H_2O_2$ treatment caused marked sustained nucleus condensation in Hoechst stain. LIPUS and $H_2O_2$ activates phosphorylation of p-ERK1/2 and PD 98059($10^{-5}M$) blocked the effect of LIPUS and $H_2O_2$. Moreover, the synergistic phosphorylation of p44/42 MAPK by $H_2O_2$, LIPUS was selectively inhibited by PD 98059, ERK1/2 inhibitor. In order to determine whether the increase in cell proliferation caused by $H_2O_2$ and LIPUS could be explained by changes in the level of the prostaglandin $E_2$. Our study demonstrated that LIPUS stimulate the cell proliferation via activated phosphorylation of ERK1/2 in condrocyte. LIPUS has anabolic effects on rat cartilage in explant cultures, indicating a potential important method for the treatment of osteoarthritic cartilarge.

Keywords

References

  1. Mitrovic, D., Quintero M., Stankovic, A., Ryckewaert, A. Cell density of adult human femoral condylar articular cartilage. Joints with normal and fibrillated surfaces. Lab Invest 49(3):309-316, 1983 https://doi.org/10.1038/jid.1967.46
  2. Gardner, D.L. Problems and paradigms in joint pathology. J Anat. 184: 1749-1755, 1994
  3. Hannan, M.T., Anderson, J.J., Zhang, Y., Levy, D., Felson, D.T. Bone mineral density and knee osteoarthritis in elderly men and women. The Framingham Study. Arthritis Rheum 36(12):1671-1680, 1993 https://doi.org/10.1002/art.1780361205
  4. Felson, D.T., Lawrence, R.C., Hochberg, M.C., McAlindon, T., Dieppe, P.A., Minor, M.A., Blair, S.N., Berman B.M., Fries J.F., Weinberger M., Lorig K.R., Jacobs J.J., Goldberg V. Osteoarthritis: new insights. Part 2: treatment approaches. Ann Intern Med. 133: 726-737, 2000 https://doi.org/10.7326/0003-4819-133-9-200011070-00015
  5. Lee, S.W., Lee, H.J., Chung, W.T., Choi, S.M., Rhyu, S.H., Kim, D.K., Kim, K.T., Kim ,J.Y., Kim, J.M., Yoo Y.H. TRAIL induces apoptosis of chondrocytes and influences the pathogenesis of experimentally induced rat osteoarthritis. Arthritis Rheum. 50(2):534-542, 2004 https://doi.org/10.1002/art.20052
  6. Hashimoto, S., Setareh, M., Ochs, R.L., Lotz, M. Fas/Fas ligand expression and induction of apoptosis in chondrocytes. Arthritis Rheum. 40(10):1749-1755, 1997 https://doi.org/10.1002/art.1780401004
  7. Mow, V.C., Wang, C.C. Some bioengineering considerations for tissue engineering of articular cartilage. Clin Orthop Relat Res. 367: 204-223, 1999 https://doi.org/10.1097/00003086-199910001-00021
  8. Chang, W., Tu, C., Chen, T.H, Komuves, L., Oda, Y., Pratt, S.A., Miller S., Shoback D. Expression and signal transduction of calcium-sensing receptors in cartilage and bone. Endocrinology 140(12):5883-5893, 1999 https://doi.org/10.1210/en.140.12.5883
  9. Doan, N., Reher, P., Meghji, S., Harris, M. In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. J. Oral Maxillofac Surg. 57(4):409-419, 1999 https://doi.org/10.1016/S0278-2391(99)90281-1
  10. Setton, L.A., Mow, V.C., Muller, F.J., Pita, J.C., Howell, D.S. Mechanical behavior and biochemical composition of canine knee cartilage following periods of joint disuse and disuse with remobilization. Osteoarthritis Cartilage 5(1):1-16, 1997 https://doi.org/10.1016/S1063-4584(97)80027-1
  11. Huang, M.H., Ding, H.J., Chai, C.Y., Huang, Y.F., Yang R.C. Effects of sonication on articular cartilage in experimental osteoarthritis. J. Rheumatol. 24(10):1978- 1984, 1997
  12. Que, F.G., Gores, G.J. Cell death by apoptosis: basic concepts and disease relevance for the gastroenterologist. Gastroenterology. 110(4):1238-1243, 1996 https://doi.org/10.1053/gast.1996.v110.pm8613014
  13. Pelletier, J.P., Jovanovic, D.V., Lascau-Coman, V, Fernandes, J.C., Manning, P.T., Connor, J.R., Currie, M.G., Martel- Pelletier, J. Selective inhibition of inducible nitric oxide synthesis reduces progression of experimental osteoarthritis in vivo. Arthritis Rheum. 43(6):1290-1299, 2000 https://doi.org/10.1002/1529-0131(200006)43:6<1290::AID-ANR11>3.0.CO;2-R
  14. Raucci, A., Laplantine, E., Mansukhani, A., Basilico, C. Activation of the ERK1/2 and p38 mitogen-activated protein kinase pathways mediates fibroblast growth factor-induced growth arrest of chondrocytes. J. Biol Chem. 279(3):1747-1756, 2004 https://doi.org/10.1074/jbc.M310384200
  15. Chang, L., Karin, M. Mammalian MAP kinase signalling cascades. Nature 410(6824):37-40, 2001 https://doi.org/10.1038/35065000
  16. Cano, E., Mahadevan, L.C. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci. 20(3):117-122, 1995 https://doi.org/10.1016/S0968-0004(00)88978-1
  17. Wang, X., Martindale, J.L., Liu, Y., Holbrook, N.J. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J. 333: 291-300, 1998 https://doi.org/10.1042/bj3330291
  18. Schortinghuis, J., Bronckers, A.L., Stegenga, B., Raghoebar, G.M. de Bont, L.G. Ultrasound to stimulate early bone formation in a distraction gap: a double blind randomised clinical pilot trial in the edentulous mandible. Arch Oral Biol. 50(4):411-420, 2005 https://doi.org/10.1016/j.archoralbio.2004.09.005
  19. Cook, S.D., Ryaby, J.P., McCabe, J., Frey, J.J., Heckman, J.D., Kristiansen T.K. Acceleration of tibia and distal radious fracture healing in patients who smoke. Clin Orthop. 337: 198-207, 1997 https://doi.org/10.1097/00003086-199704000-00022
  20. Chapman, I.V., MacNally, N.A., Tucker, S. Ultrasound- induced changes in rates of influx and efflux of potassium ions in rat thymocytes in vitro. Ultrasound Med Biol. 6(1):47-58, 1980 https://doi.org/10.1016/0301-5629(80)90063-0
  21. Parvizi, J., Wu, C.C., Lewallen, D.G., Greenleaf, J.F., Bolander, M.E. Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrcan gene expression. J. Orthop Res. 17(4):488-494, 1997 https://doi.org/10.1002/jor.1100170405
  22. Rubin, C., Bolander, M., Ryaby, J.P., Hadjiargyrou, M. The use of low-intensity ultrasound to accelerate the healing of fractures. J. Bone Joint Surg Am. 83A(9):259-270, 2001
  23. Naruse, K., Miyauchi, A., Itoman, M., Mikuni-Takagaki, Y. Distinct anabolic response of osteoblast to low-intensity pulsed ultrasound. Bone Miner Res. 18(2):360-369, 2003 https://doi.org/10.1359/jbmr.2003.18.2.360
  24. Yang, K.H., Choi, C.H., Cho, J.H. Stimulation of fracture healing by low intensity pulsing ultrasound. The Journal of the Korean Society of Fracture 11(2):247-253, 1998 https://doi.org/10.12671/jksf.1998.11.2.247
  25. Kumar, A., Chaudhry, I., Reid, M.B., Boriek, A.M. Distinct signaling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers. J. Biol Chem. 277(48):46493-46503, 2002 https://doi.org/10.1074/jbc.M203654200
  26. Pouysségur, J., Volmat, V., Lenormand, P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol. 64(5-6):755-763, 2002 https://doi.org/10.1016/S0006-2952(02)01135-8
  27. Zhou, S., Schmelz, A., Seufferlein, T., Li, Y., Zhao, J., Bachem M.G. Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J. Biol Chem. 279(52):54463-54469, 2004 https://doi.org/10.1074/jbc.M404786200
  28. Chen, Y.J., Wang, C.J., Yang, K.D., Chang, P.R., Huang, H.C., Huang, Y.T., Sun Y.C., Wang F.S. Pertussis toxin-sensitive Galphai protein and ERK-dependent pathways mediate ultrasound promotion of osteogenic transcription in human osteoblasts. FEBS Lett. 554(1-2):154-158, 2003 https://doi.org/10.1016/S0014-5793(03)01157-8
  29. Choi, B.H., Choi, M.H., Kwak, M.G., Min, B.H., Woo, Z.H., Park S.R. Mechanotransduction pathways of low-intensity ultrasound in C-28/I2 human chondrocyte cell line. Proc Inst Mech Eng. 221(5):527-535, 2007
  30. DiPietrantonio, A.M., Hsieh, T., Wu, J.M. Activation of caspase 3 in HL-60 cells exposed to hydrogen peroxide. Biochem Biophys Res Commun. 255(2):477-482, 1999 https://doi.org/10.1006/bbrc.1999.0208
  31. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326-1331, 1995 https://doi.org/10.1126/science.270.5240.1326
  32. Stadheim, T.A., Kucera, G.L. Extracellular signal-regulated kinase (ERK) activity is required for TPA-mediated inhibition of drug-induced apoptosis. Biochem Biophys Res Commun 245(1):266-271, 1998 https://doi.org/10.1006/bbrc.1998.8410
  33. Asada, S., Fukuda, K., Nishisaka, F., Matsukawa, M., Hamanisi C. Hydrogen peroxide induces apoptosis of chondrocytes; involvement of calcium ion and extracellular signal-regulated protein kinase. Inflamm Res. 50(1):19-23, 2001 https://doi.org/10.1007/s000110050719
  34. Reyes-Martin, P., Alique, M., Parra, T., Hornedo, J.P., Lucio-Cazana J. Cyclooxygenase-independent inhibition of $H_2O_2$-induced cell death by S-ketoprofen in renal cells. Pharmacol Res. 55(4):295-302, 2007 https://doi.org/10.1016/j.phrs.2006.12.007
  35. Takahashi T., Ogawa Y., Kitaoka K., Tani T., Uemura Y., Taguchi H., Kobayashi T., Seguchi H., Yamamoto H., Yoshida S. Selective COX-2 inhibitor regulates the MAP kinase signaling pathway in human osteoarthritic chondrocytes after induction of nitric oxide. Int J. Mol Med. 15(2):213-219, 2005