Inhibitory Effect of Chan-Su on the Secretion of PGE2 and NO in LPS-stimulated BV2 Microglial Cells

  • Kim, Min-Hee (Department of Oriental Medicine, College of Oriental Medicine, Dongeui University) ;
  • Lyu, Ji-Hyo (Clinical Research Center of Oriental Medicine, Dongeui University) ;
  • Lyu, Sun-Ae (Department of Oriental Medicine, College of Oriental Medicine, Dongeui University) ;
  • Hong, Sang-Hoon (Department of Oriental Medicine, College of Oriental Medicine, Dongeui University) ;
  • Kim, Won-Il (Department of Oriental Medicine, College of Oriental Medicine, Dongeui University) ;
  • Yoon, Hwa-Jung (Department of Oriental Medicine, College of Oriental Medicine, Dongeui University) ;
  • Ko, Woo-Shin (Department of Oriental Medicine, College of Oriental Medicine, Dongeui University)
  • Published : 2008.10.25

Abstract

Chan-Su (Venenum bufonis) has long been for a variety of other purposes including treatment of inflammation in the folk medicine recipe. Since nitric oxide (NO) is one of the major inflammatory parameters, we first studied the effects of Chan-Su on NO production in lipopolysaccharide (LPS)-stimulated BV2 microglial cells, Chan-Su inhibited the secretion of NO in BV2 microglial cells, without affecting cell viability, The protein level of inducible nitric oxide synthase (iNOS) was decreased by Chan-Su, And Chan-Su also inhibited production of prostaglandin E2 (PGE2) and expression of cyclooxygenase (COX)-2. Proinflammatory cytokines, such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$ and IL-12, were inhibited by Chan-Su in a dose-dependent manner. And Chan-Su inhibited the degradation of ${IkB-\alpha}$, which was considered to be inhibitor of nuclear factor $(NF)-{\kappa}B$, one of a potential transcription factor for the expression of iNOS, COX-2 and proinflammatory cytokines. These results suggest that Chan-Su could exert its anti-inflammatory actions by suppressing the synthesis of NO through inhibition of $I{\kappa}B-{\alpha}$ degradation.

본 논문은 오랫동안 민간요법으로 염증치료에 사용되어오던 섬수가 lipopolysaccharide(LPS)-자극된 BV2 소교 세포의 nitric oxide(NO) 분비에 미치는 효과에 대해 연구한 내용이다. 실험 결과 섬수는 세포 생존력에 대한 영향 없이 BV2 소교 세포에서 NO 분비를 억제시켰고, nitric oxide synthase (iNOS) 단백질도 감소시켰다. 또한 섬수는 prostaglandin E2 (PGE2) 생산 및 cyclooxygenase (COX)-2 발현을 저지하였고, proinflammatory cytokines과 ${IkB-\alpha}$감소를 억제시켰다. 따라서 섬수가 $I{\kappa}B-{\alpha}$감소를 억제함으로써 NO 합성을 저해하여 항염증작용을 할 수 있다는 내용이다.

Keywords

References

  1. Lee, S.I., Ahn, D.K., Shin, M.K. Clinical application of herb, SeungBo press, Seoul, p 574, 1982
  2. Chen, K.K., Kovarikove, A. Pharmacology and toxicology of toad venom. Journal of Pharmaceutical Science 56: 1535-1541, 1967 https://doi.org/10.1002/jps.2600561202
  3. Streit, W.J., Mrak, R.E., Griffin, W.S. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation, 1: 14, 2004 https://doi.org/10.1186/1742-2094-1-14
  4. Minghetti, L., Levi, G. Induction of prostanoid biosynthesis by bacterial lipopolysaccharide and isoproterenol in rat microglial cultures. J Neurochem. 65: 2690-2698, 1995 https://doi.org/10.1046/j.1471-4159.1995.65062690.x
  5. Benveniste, E.N. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med. 75(3):165-173, 1997 https://doi.org/10.1007/s001090050101
  6. Nakajima, K., Kohsaka, S. Functional roles of microglia in the central nervous system. Hum Cell. 11(3):141-155, 1998
  7. Vane, J.R., Mitchell, J.A., Appleton, I., Tomlinson, A., Bishop-Bailey, D., Croxtall J., Willoughby, D.A. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci. 91(6):2046-2050, 1994 https://doi.org/10.1073/pnas.91.6.2046
  8. Mayer, B., Hemmens, B. Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci. 22(12):477-481, 1997 https://doi.org/10.1016/S0968-0004(97)01147-X
  9. Murata, T., Ushikubi, F., Matsuoka, T., Hirata, M., Yamasaki, A., Sugimoto, Y., Ichikawa, A., Aze, Y., Tanaka, T., Yoshida, N., Ueno, A., Oh-ishi, S., Narumiya, S. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 388: 678-682, 1997 https://doi.org/10.1038/41780
  10. Ko, W.S., Park, T.Y., Park, C., Kim, Y.H., Yoon, H.J., Lee, S.Y., Hong, S.H., Choi, B.T., Lee, Y.T., Choi, Y.H. Induction of apoptosis by Chan Su, a traditional Chinese medicine, in human bladder carcinoma T24 cells. Oncol Rep. 14(2):475-480, 2005
  11. Shin, M.K., An, D.K., Lee, S.I. Clinical Application of Oriental Medicine, Sungbosa, Seoul, p 71, 1982
  12. Schmidt, H.H.H.W., Kelm, M. Determination of nitrite and nitrate by the Griess reaction. In: Methods in Nitric Oxide research, John Wiley, Sons Ltd., pp 491-497, 1996
  13. Skehan, P. Assays of cell growth and cytotoxicity. In: Studzinski, G.P. (Eds.), Cell growth and apoptosis. Oxford University press, New York, p 180, 1998
  14. Ghosh, S., May M.J., Kopp, E.B. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 16: 225-260, 1998 https://doi.org/10.1146/annurev.immunol.16.1.225
  15. Moncada, S., Palmer, R.M., Higgs, E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev. 43: 109-142, 1991
  16. Marletta, M.A., Yoon, P.S., Iyengar, R., Leaf, C.D., Wishnok, J.S. Macrophage oxidation of L-arginine to nitrite and nitrate: Nitrite oxide is an intermediate. Biochem. 27: 8706-8711, 1998
  17. Kroncke, K.D., Fehsel, K., Kolb-Bachofen, V. Nitric oxide: cytotoxicity versus cytoprotection-how, why, when, and where? Nitric Oxide 1(2):107-120, 1997 https://doi.org/10.1006/niox.1997.0118
  18. Forstermann, U., Closs, E.I., Pollock, J.S., Nakane, M., Schwarz, P., Gath, I., Kleinert, H. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23: 1121-1131, 1994 https://doi.org/10.1161/01.HYP.23.6.1121
  19. Yui, Y., Hattori, R., Kosuga, K., Eizawa, H., Hiki, K., Kawai, C. Purification of nitric oxide synthase from rat macrophages. J Biol Chem. 266: 12544-12547, 1991
  20. Adler, K.B., Fischer, B.M., Wrigh,t D.T., Cohn, L.A., Becker, S. Interactions between respiratory epithelial cells and cytokines: relationships to lung inflammation. Ann N Y Acad Sci. 725: 128-145, 1994 https://doi.org/10.1111/j.1749-6632.1994.tb00275.x
  21. Fiebich, B.L., Biber, K., Lieb, K., van Calker, D., Berger, M., Bauer, J., Gebicke-Haerter, P.J. Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia. 18: 152-160, 1996 https://doi.org/10.1002/(SICI)1098-1136(199610)18:2<152::AID-GLIA7>3.0.CO;2-2
  22. O'Banion, M.K., Miller, J.C., Chang, J.W., Kaplan, M.D., Coleman, P.D. Interleukin-1b induces prostaglandin G/H synthase-2 (cyclooxygenase-2) in primary murine astrocyte cultures. J Neurochem. 66: 2532-2540, 1996 https://doi.org/10.1046/j.1471-4159.1996.66062532.x
  23. Fiebich, B.L., Mueksch, B., Boehringer, M., Hull, M. Interleukin-1beta induces cyclooxygenase-2 and prostaglandin E(2) synthesis in human neuroblastoma cells: involvement of p38 mitogen-activated protein kinase and nuclear factor-kappa B. J Neurochem. 75: 2020-2028, 2000 https://doi.org/10.1046/j.1471-4159.2000.0752020.x
  24. Bauer, M.K., Lieb, K., Schulze-Osthoff, K., Berger, M., Gebicke-Haerter, P.J., Bauer, J., Fiebich, B.L. Expression and regulation of cyclooxygenase-2 in rat microglia. Eur J Biochem. 243: 726-731, 1997 https://doi.org/10.1111/j.1432-1033.1997.00726.x
  25. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L. Inflammation and Alzheimer's disease. Neurobiol Aging. 21: 383-421, 2000 https://doi.org/10.1016/S0197-4580(00)00124-X
  26. Candelario-Jalil, E., Gonzalez-Falcon, A., Garcia-Cabrera, M., Leon, O.S., Fiebich, B.L. Wide therapeutic time window for nimesulide neuroprotection in a model of transient focal cerebral ischemia in the rat. Brain Res. 1007: 98-108, 2004 https://doi.org/10.1016/j.brainres.2004.01.078
  27. Chang, H.K., Yang, H.Y., Lee, T.H., Shin, M.C., Lee, M.H., Shin, M.S., Kim, C.J., Kim, O.J., Hong, S.P. Cho, S. Armeniacae semen extract suppresses lipopolysaccharide- induced expressions of cyclooxygenase [correction of cycloosygenase]-2 and inducible nitric oxide synthase in mouse BV2 microglial cells. Biol Pharm Bull. pp 449-454, 2005
  28. Munoz-Fernandez, M.A., Fernandez, M.A., Fresno, M. Synergism between tumor necrosis factor-alpha and interferon-gamma on macrophage activation for the killing of intracellular Trypanosoma cruzi through a nitric oxide- dependent mechanism. Eur J Immunol. 22: 301-307, 1992 https://doi.org/10.1002/eji.1830220203
  29. Harbrecht, B.G., Di Silvio, M., Demetris, A.J., Simmons, R.L., Billiar, T.R. Tumor necrosis factor-alpha regulates in vivo nitric oxide synthesis and induces liver injury during endotoxemia. Hepatology 20: 1055-1060, 1994 https://doi.org/10.1002/hep.1840200439
  30. Trinchieri, G. Proinflammatory and immunoregulatory functions of interleukin-12. Int Rev Immunol. 16: 365-396, 1998 https://doi.org/10.3109/08830189809043002
  31. Muller, J.M., Loms Ziegler-Heitbrock, H.W., Baeuerle, P.A. Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiol. 187: 233-256, 1993 https://doi.org/10.1016/S0171-2985(11)80342-6
  32. Xie, Q.W., Kashiwabara, Y., Nathan, C. Role of transcription factor NF-${\kappa}B$/Rel in induction of nitric oxide synthase. J Biol Chem. 269: 4705-4708, 1994
  33. Baldwin, A.S. The NF-$\kappa$B and I-$\kappa$B proteins: new discoveries and insights. Annu Rev Immunol. 14: 649-683, 1996 https://doi.org/10.1146/annurev.immunol.14.1.649
  34. Karin M., Delhase M. The IkB kinase (IKK) and NF-kB: key elements of proinflammatory signaling. Seminars in Immunology 12: 85-98, 2000
  35. Karin M., Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annual Review of Immunology 18: 621-663, 2000 https://doi.org/10.1146/annurev.immunol.18.1.621