DOI QR코드

DOI QR Code

A Convergence Test of the Full-potential Linearized Augmented Plane Wave (FLAPW) Method: Ferromagnetic Bulk BCC Fe

  • Seo, Seung-Woo (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology) ;
  • Song, You-Young (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology) ;
  • Gul, Rahman (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology) ;
  • Kim, In-Gee (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology) ;
  • Weinert, M. (Department of Physics, University of Wisconsin-Milwaukee) ;
  • Freeman, A.J. (Department of Physics and Astronomy, Northwestern University)
  • Published : 2009.12.31

Abstract

The convergence behavior of the all-electron full-potential linearized augmented plane-wave (FLAPW) method with the explicit orthogonalization (XO) scheme is tested on ferromagnetic bulk body-centered-cubic Fe. Applying a commonly used criterion relating the plane-wave and angular momentum cutoffs, $l_{max}\;=\;R_{MT}K_{max}$, where $R_{MT}$ is the muffin-tin (MT) sphere radius and $K_{max}$ is the plane-wave cutoff for the basis - the total energy is converged and stable for $K_{max}R_{MT}$ = 10. The total energy convergence dependence on the star-function cutoff, $G_{max}$, is minimal and so a $G_{max}$ of 3$K_{max}$ or a large enough $G_{max}$ is a reasonable choice. We demonstrate that the convergence with respect to $l_{max}$ or a fixed large enough $G_{max}\;and\;K_{max}$ are independent, and that $K_{max}$ provides a better measure of the convergence than $R_{MT}K_{max}$. The dependence of the total energy on $R_{MT}$ is shown to be small if the core states are treated equivalently, and that the XO scheme is able to treat systems with significantly smaller $R_{MT}$ than the standard LAPW method. For converged systems, the calculated lattice parameter, bulk modulus, and magnetic moments are in excellent agreement with the experimental values.

Keywords

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) https://doi.org/10.1103/PhysRev.136.B864
  2. M. Weinert, G. Schneider, R. Podloucky, and J. Redinger, J. Phys.: Condens. Matter 21, 084201 (2009) https://doi.org/10.1088/0953-8984/21/8/084201
  3. J. C. Slater, Phys. Rev. 51, 846 (1937) https://doi.org/10.1103/PhysRev.51.846
  4. E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); ibid. 46, 509 (1934) https://doi.org/10.1103/PhysRev.43.804
  5. J. Korringa, Physica 13, 392 (1947); W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954)
  6. D. D. Koelling and G. O. Arbman, J. Phys. F 5, 2041 (1975) https://doi.org/10.1088/0305-4608/5/11/016
  7. O. K. Andersen, Phys. Rev. B 12, 3060 (1975) https://doi.org/10.1103/PhysRevB.12.3060
  8. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981), and references therein. https://doi.org/10.1103/PhysRevA.24.864
  9. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982) https://doi.org/10.1103/PhysRevB.26.4571
  10. H. J. F. Jansen and A. J. Freeman, Phys. Rev. B 30, 561 (1984) https://doi.org/10.1103/PhysRevB.30.561
  11. M. Weinert, J. Math. Phys. 22, 2433 (1981) https://doi.org/10.1063/1.524800
  12. T. L. Loucks, Augmented Plane Wave Method (Benjamin, New York, 1967)
  13. D. Singh, Planewaves, Pseudopotentials and the LAPW Method (Kluwer Academic Publishers, Boston, 1994)
  14. S.-H. Wei, H. Krakauer, and M. Weinert, Phys. Rev. B 32, 7792 (1985) https://doi.org/10.1103/PhysRevB.32.7792
  15. A. J. Freeman, A. Continenza, S. Massidda, and J. C. Grossman, Physica C 166, 317 (1990) https://doi.org/10.1016/0921-4534(90)90411-7
  16. S. Massidda, A. Continenza, A. J. Freeman, T. M. de Pascal, F. Meloni, and M. Serra, Phys. Rev. B 41, 12709 (1990) https://doi.org/10.1103/PhysRevB.41.12079
  17. H. Tanaka, H. Harima, T. Yamamoto, H. Katayama-Yoshida, Y. Nakata, and Y. Hirotsu, Phys. Rev. B 62, 15042 (2000) https://doi.org/10.1103/PhysRevB.62.15042
  18. C. Stamp, W. Mannstadt, R. Asahi, and A. J. Freeman, Phys. Rev. B 63, 155106 (2001) https://doi.org/10.1103/PhysRevB.63.155106
  19. W. T. Geng, A. J. Freeman, and G. B. Olson, Solid State Commun. 119, 585 (2001) https://doi.org/10.1016/S0038-1098(01)00298-8
  20. A. E. Merad, M. B. Kanoun, J. Cibert, H. Aourag, G. Merad, Mater. Chem. Phys. 82, 471 (2003). https://doi.org/10.1016/S0254-0584(03)00276-1
  21. S. Di Napoli, A. M. Llois, G. Bihlmayer and S. Blügel, M. Alouani, and H. Dreysse, Phys. Rev. B 70, 174418 (2004) https://doi.org/10.1103/PhysRevB.70.174418
  22. A. D. Sayede, T. Amriou, M. Pernisek, B. Khelifa, and C. Mathieu, Chem. Phys. 316, 72 (2005) https://doi.org/10.1016/j.chemphys.2005.04.036
  23. K. Nakamura, T. Ito, and A. J. Freeman, Phys. Rev. B 72, 064449 (2005) https://doi.org/10.1103/PhysRevB.72.064449
  24. M. Sahnoun, C. Daul, M. Driz, J. C. Parlebas, and C. Demangeat, Comput. Mater. Sci. 33, 175 (2005) https://doi.org/10.1016/j.commatsci.2004.12.010
  25. R. Terki, G. Bertrand, H. Aourag, C. Coddet, Mater. Sci. in Semiconductor Processing 9, 1006 (2006) https://doi.org/10.1016/j.mssp.2006.10.033
  26. V. Mishra, S. Chaturvedi, Physica B 393, 278 (2007) https://doi.org/10.1016/j.physb.2007.01.015
  27. A. V. Santos, Physica B 387, 136 (2007) https://doi.org/10.1016/j.physb.2006.03.103
  28. B. Bia ek and Jae Il Lee, J. Magnetics 12, 93 (2007) https://doi.org/10.4283/JMAG.2007.12.3.093
  29. T. Cai, H. Han, C. Zhang, J. Zhou, Y. Yu, and T. Gao, Solid State Commun. 146, 368 (2008) https://doi.org/10.1016/j.ssc.2008.03.038
  30. N. I. Medvedeva and A. J. Freeman, Scripta Mater. 58, 671 (2008) https://doi.org/10.1016/j.scriptamat.2007.11.043
  31. R. Miloua, Z. Kebbab, F. Miloua, and N. Benramdane, Phys. Lett. A 372, 1910 (2008) https://doi.org/10.1016/j.physleta.2007.10.077
  32. Gul Rahman and In Gee Kim, J. Magnetics 13, 124 (2008) https://doi.org/10.4283/JMAG.2008.13.4.124
  33. S. J. Youn and S. C. Hong, J. Magnetics 13, 140 (2008) https://doi.org/10.4283/JMAG.2008.13.4.140
  34. W. S. Yun, Gi-Beom Cha, and S. C. Hong, J. Magnetics 13, 144 (2008) https://doi.org/10.4283/JMAG.2008.13.4.144
  35. Y. R. Jang and J. I. Lee, J. Magnetics 13, 7 (2008) https://doi.org/10.4283/JMAG.2008.13.1.007
  36. K. Nakamura, R. Shimabukuro, Y. Fujiwara, T. Akiyama, T. Ito, and A. J. Freeman. Phys. Rev. Lett. 102, 187201 (2009). https://doi.org/10.1103/PhysRevLett.102.187201
  37. Gul Rahman, J. Magn. Magn. Mater. 321, 2775 (2009) https://doi.org/10.1016/j.jmmm.2009.04.003
  38. S. Drablia, H. Meradji, S. Ghemid, G. Nouet, and F. El Haj Hassan, Comput. Mater. Sci. 46, 376 (2009). https://doi.org/10.1016/j.commatsci.2009.03.013
  39. Jae Hoon Jang, In Gee Kim, and H. K. D. H. Bahdeshia, Comput. Mater. Sci. 44, 1319 (2009) https://doi.org/10.1016/j.commatsci.2008.08.022
  40. R. Kohlhaas, P. Donner, and N. Schmitz-Pranghe, Z. Angew. Phys. 23, 245 (1967)
  41. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965) https://doi.org/10.1103/PhysRev.140.A1133
  42. See http://www.flapw.com
  43. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) https://doi.org/10.1103/PhysRevLett.77.3865
  44. D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977) https://doi.org/10.1088/0022-3719/10/16/019
  45. D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977) https://doi.org/10.1088/0022-3719/10/16/019
  46. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976) https://doi.org/10.1103/PhysRevB.13.5188
  47. F. D. Murnaghan, Proc. Nat'l. Acad. Sci. U.S.A. 30, 244 (1944); F. Birch, Phys. Rev. 71, 809 (1947) https://doi.org/10.1073/pnas.30.9.244
  48. P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, J. Phys.: Condens. Matter 1, 1941 (1989). https://doi.org/10.1088/0953-8984/1/11/002
  49. J.-P. Poirier and A. Tarantola, Phys. Earth Planet. In. 109, 1 (1998) https://doi.org/10.1016/S0031-9201(98)00112-5
  50. V. L. Moruzzi and P. M. Marcus, in Handbook of Magnetic Materials, edited by K. H. J. Buschow (Elsevier, Amsterdam, 1993), Vol. 7
  51. O. L. Andersen, in Physical Acoustics, edited by W. P. Mason (Academic, New York, 1965), Vol. III-B, pp. 77-95
  52. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, Singapore, 1976) p. 39
  53. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipies: The Art of Scientic Computing 3rd edition (Cambridge University Press, Cambridge, 2007) Sec. 5.7
  54. C. Kittel, Introduction to Solid State Physics 8-th edition (John-Wiley & Sons, International Editions, 2005) p. 328

Cited by

  1. A Systematic Study on Iron Carbides from First-Principles vol.654-656, pp.1662-9752, 2010, https://doi.org/10.4028/www.scientific.net/MSF.654-656.47