Optimization the Xylose Fractionation Conditions of Pepper Stem with Dilute Sulfuric Acid

Kyung-Yoen Won and Kyeong-Keun Oh*
Department of Applied Chemical Engineering, Dankook University, Cheonan, 330-714, Korea.

Abstract Response surface methodology (RSM) was used for optimization the fraction conditions of xylose from pepper stem with dilute sulfuric acid. The independent variables were acid concentration in the range of 1.134 to 2.866%, reaction temperatures in the range of 142.68 to 177.32°C, and hydrolysis time in the range of 6.34 to 23.66 min. were studied. The dependent variables were xylose yield from pepper stem, and the production of by-products, for example, furfural, acetic acid, HMF etc. Experimental results had a good match with statistical result. The maximum xylose yield obtained in this experiment was 71% concentration.

Keywords: Biomass (биооруди), Fractionation (분열), Response Surface Methodology (반응표면적분석), Dilute-acid (품은 산), Pepper stem (고추대)

서 론

최근 화학연구가 고급화에 따라 대체에너지의 필요성은 계속적으로 증가하고 있다. 이에 따라 에너지로의 전환이 가능한 전기제 (hard wood), 연목제 (soft wood), 농업 부산물 (agricultural residue)을 비롯한 심유소계 바이오매스가 중요한 자원으로 부각되고있다(1, 2). 심유소계 바이오매스는 cellulose (30-40%), hemicellulose (20-25%), 리그닌 (20-25%)으로 구성되어있다(3-6). 심유소계 바이오매스를 원료로 하여 에탄올이나 여러 가지 화합물을 생산하기 위해서는 심유소계 바이오매스를 구성하는 탄수화물을 미생물 발효가 가능한 발효성 당으로 전환하여야 한다(7). 이를 성분들을 효과적으로 전환하기 위해서 물리화학적 처리방법이 요구 되어지며 우선 리그노섬유소를 구성하고 있는 구성성분을 고려한 분별공정이 수행되어야 한다. 이러한 분별 공정의 목적은 물리화학적 방법으로 바이오매스에서 유효성분을 분별함으로써, 효소를 통한 가수분해 효율을 증진시키는데 있다(8-11).

우리나라에서 발생되는 보릿짚, 유채대, 벌akedirs, 고추대 등과 같은 농업부산물들은 친환경적인 생물성 폐허료로써 고무가가치를 지니고, 환경상에서도 높은 잡재료로 지니고 있다. 그러나 우리나라에서 발생되는 농 임산 폐기물의 80% 이상이 자원으로 재활용되지 못하고 비생산적 처리에 의존하고 있는 실정이며, 따라서 국내 농 임산 폐기물은 이용하는 자원화 기술개발이야말로 부족자원이 부족한 우리나라에는 반드시 필요한 자원확보의 대안이 될 수 있을 것이다. 심유소계 바이오매스로 주목 받고 있는 보릿짚, 유채대, 벌 århus 등은 평화성식물에 의해 대기기의 이산화탄소를 이용하여 축적되기 때문에, 바이오 에너지로 사용할 경우 이산화탄소는 단지 순환할 뿐 추가적으로 배출되는 것은 없다고irror 할 수 있어, 심유소계 바이오매스를 통한 바이오 에너지 이용은 지구온난화를 개선하고 시키는 화학적 섭취에 따른 문제점도 감소 시킬 수 있는 장점을 가진다. 이와 관련하여 우리나라의 대표적 체소작물인
고추의 경우 2007년도 이후 평균 채배면적이 6만ha로 가장 많고, 총 생산량도 매년 약 2조톤으로 농가의 환급상작물로 중요한 작물이다. 우리나라의 연간 고추 채배량은 약 42만 톤이며 이에 따른 고추 대의 발생량은 약 90만 톤이다. 그러나 고추의 생산성은 인근의 생산과 노동의 감소 및 고령화로 생산량이 상승하고, 재배규모가 억제되어 고추농가의 78%가 300평 미만 (평균 채배면적 240평)으로 자급 형의 농가들이 대부분이며 농업집약적 재배에 의존하고 있다. 고추 생산비중 노량비율이 46%를 차지하여 작 업의 생생화가 필요하다고, 고추채배에는 10 ha당 200시간 전후로 소요되며 그 중 수확 노량시간이 80시간으로 39%를 점유하여 특히 수확작업의 생생화 및 기계화가 필요한 실정 이다.(12). 따라서 경작 체계되는 경작을 일시적 수확의 문제인 품종으로 전환되며, 이에 따른 수확 후 발생하는 고추가지, 빼는 부산물이 대량으로 발생하 고, 이들 농업폐기물들은 소각하거나 대량 방폐기 되는 실정이다. 고추는 보으로나 보물류와 같이 농업부산 물로 영을 얻을 수 있는 비오염대사로만 고추두는 단단하고 전고한 구조가 가지고 있어 농업 농업부산물과 같이 가축의 사료나 산업의 원료로 사용되지 못하고 있다. 농업 부산물 또는 농업폐기물의 자연생태계에서의 분해는 흔히 이루어지지만 이는 분해속도, 기후조건 등이 낮아 환경에 충격되거나 환경적인 오염원이 되고 있으 며, 소각 등으로 인한 대기오염을 유발시킨다(13). 따라서 이러한 국내 농업의 경작적 행태 변화와 자원 재활용적인 측면, 기계적인 방법을 통한 대량 수거를 유도할 수 있는 체계를 마련하고, 환경적 오염원의 저감 측면에서의 가능성이 바이오 매스 에너지로 이의 활용도를 고찰하기 위하여 본 연구 소재로서 고추 대를 사용하게 되었다.

본 연구에서는 비식용부품 중 농업폐기물로 영을 수 있는 고추두를 비오 매스로 선정하고 본 생산을 이용한 자일로즈 병합공정을 통해 바이오매스 내의 구성요소 인 반성유소를 분해하여 자일로즈를 효율적으로 분해해내 는 조건을 최적화 하고자 하였다.

재료 및 방법

재료

본 실험에서 사용된 고추재는 농촌진흥청(Rural Development Agriculture)로부터 공급받았고. 고추재는 나이프 밀로 분쇄하고, 14~45 mesh 크기의 재료 걸러서 45 ± 5℃에서 24시간 건조한 시료를 사용하였으며 이때 시료의 수분함량 은 8.05%였습니다(수분 함량분석기도, Mb45, Ohaus, Switzerland).
본 실험에서는 고추 대의 사료 가수분해물의 표준 당 (standard) 으로 D-글루코즈, D-자탈로스, L-아라비노스 (Sigma-Aldrich Co., USA) 를 사용하였다.

분석방법

탄수화물 분석(Carbohydrate analysis)

고추대 탄수화물분석은 NREL/TP-510-42623에 따라 시행 되었다(14). 먼저 탄수화물분석을 위해 준비한 고추대 시료 0.3 ± 0.01g을 정확히 취하여 20 mL test tube에 넣고 72% 황산 3 mL을 주입한 다음 15~20분 간격으로 차례 추출시킨 뒤 2시간 동안 30℃의 환원수조 (shaking water bath, Dea ill Co., Korea)에서 반응시켰다. 2시간 후 84 mL의 중류수와 함께 autoclave 용 100 mL 병 (Laboratory bottle, Duran, Germany)에 가하여 산 농도를 4%로 낮춘 후 autoclave (Model 8000-Dse, Nap Co., Korea)에서 121℃, 60분간 반응 시켰다. 반응 종 분해되는 당의 양을 보징하기 위해 시약 급 뿐 D-글루코스, D-자탈로스, L-아라비노스 (Sigma-Aldrich Co., USA)도 같은 조건에서 반응 시켰다.
반응 후 상온까지 냉각시킨 시료를 탄산감소 (CaCO3)로 중화하고 원심분리기 (UNION 32 R, Hanil)를 통해 원심 분리시킨 후 시료 상등액을 10 mL 주사기로 취해 0.45 μM 주사기용 필터 (PVDF syringe filter, Whatman Co., England) 로 여과 후 HPLC (Breeze HPLC system, Waters Co., USA) 를 통해 분석하였다.

리그닌 및 화분분석

고추대 바이오매스의 리그닌 및 화분 분석은 NREL/TP- 510-42618에 따라 시행 되었다(15). 리그닌 분석을 위해 준비된 고추대 시료 2g을 100 mL 유리시험관에 넣고 72% 황산 30 mL을 주입하여 2시간 동안 반응시킨 후, 560 mL의 중류수를 청취한 후 4시간 동안 환원 냉각하여 건조 당을 추출한 다음, 105 ± 3℃에서 12시간 건조 후 무게를 측정하여 리그닌 함량을 결정하였다. 화분 함량은 2 g의 시료를 575 ± 3℃의 전기로에서 4시간 이상 화시시킨 후 남은 양 의 무게를 계산하여 측정하였다. 탄수화물 분석 및 리그닌 화분 분석결과는 Table 1에 나타내었다.

<table>
<thead>
<tr>
<th>Table 1. The chemical composition of pepper stem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucan (%)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ext. (EIOH)</td>
</tr>
<tr>
<td>36.91 ± 0.52</td>
</tr>
</tbody>
</table>
가수분해물 분석

고추대 시료의 가수분해물의 분석을 위해 HPLC (Breeze HPLC system, Waters Co., USA)를 사용하고 분석 컬럼은 (Aminex HPX-87H, Bio-rad Co., USA)를 사용하였다. 이 때 분석 용액은 0.005 M H2SO4를 사용하였고, 용액온도는 0.5 mL/min으로 설정하였다. 분석식 컬럼과 RI 검출기 (Refractive index detector 2414, Waters Co., USA)의 온도는 각각 65℃, 50℃로 각각 조절하였다. 가수분해물 표준으로 D-글루코스, D-자일로스, L-아라비노스 (Sigma-Aldrich Co., USA)를 사용하였다.

모든 환경을 이용한 자일로스 분열공정

모든 환경을 이용한 고추대 시료의 자일로스 분열공정에서 반응기는 SUS316제질의 길이 18cm 내경 1cm의 bomb tube 반응기로 사용하고, 시료는 0.5 ± 0.01 g을 중전하고 온도는 환경 온도 70 ± 0.1℃를 가하여 가수분해 반응을 진행하였다. 반응 후에 시료의 가수분해로부터 분리되어 나온 액체를 회수하여 자일로스 농도를 분석하여 온도를 이용한 고추대 시료의 자일로스 분열공정효과를 비교하였다. 자일로스 분열 전에 고추대 자일로스 엽럼과 비교하여 자일로스수용을 결정하였다.

반응변량분석 (RSM)을 통한 온도 환경 자일로스 분열 조건 최적화

수집된 자일로스수용을 종속변수로 하고, 반응온도, 산 농도 그리고 반응시간을 독립변수로 하여 이들 변수들 간의 상호작용을 관찰하고, 자일로스의 수용을 최대화시키기 위하여 반응변량분석법 (RSM)을 이용하여 자일로스 분열 공정 조건 최적화하기 시도하였다. Table 2에서 나타난듯이 실험계획은 3변수 3수준 범위 인자가 설계에 따라 4개의 스타포안트와 4개의 중심점의 반복실험이 포함하여 17가지 조건에서 수행하였다. 반응온도, 산 농도 및 반응시간은 각각
X1, X2, X3로 하고, 이들 각 독립변수의 수준은 반응온도 ± 10℃, 산 농도 ± 0.5%, 그리고 반응시간 ± 5분 범위에서 수행하였다. 실험결과는 SAS (version 9.1, SAS Institute Inc., USA)의 RSREG을 이용하여 통계적으로 분석하고 종속변수 (자일로스 수용)에 대한 회귀 방정식을 얻음으로써 적극 반응 조건을 얻었다 (16).

Table 2. Factor and their level for central composite design

<table>
<thead>
<tr>
<th>Variable</th>
<th>Symbol</th>
<th>Coded Factor Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction temperature</td>
<td>X1</td>
<td>142.68 150 160 170 177.32</td>
</tr>
<tr>
<td>Acid conc. (wt %)</td>
<td>X2</td>
<td>1.134 1.50 2.5 2.866</td>
</tr>
<tr>
<td>Reaction time (min)</td>
<td>X3</td>
<td>6.34 10.00 15.00 20.00 23.66</td>
</tr>
</tbody>
</table>

결과 및 고찰

반응변량 분석법에 의한 산 전처리 공정 최적화

반응온도, 산 농도 및 반응시간을 독립변수로 하여 이들 변수들 간의 상호작용을 관찰하고, 자일로스 수용을 최대화시키기 위하여 반응변량분석법 (RSM)을 이용하여 자일로스 분열공정 조건을 최적화하기 시도하였다. Table 3의 반응조건에서 자일로스 분열공정 후 반응변량 분석한 결과 자일로스 수용의 최대값을 갖는 반응온도 (X1), 산 농도 (X3)와 반응시간 (X2)로 각각 예측할 수 있다.

\[
Y = 6.61 - 0.85X_1 + 0.32X_2 - 0.01X_1X_3 - 0.71X_2X_3 - 0.03X_1X_3 - 0.10X_1X_3 - 0.79X_2^2 - 0.35X_3^2 - 0.16X_2^2
\]

식 (1)으로부터 반응온도 (-0.86), 산 농도 (1.17), 반응시간 (0.41)의 코드 값을 구할 수 있으며 각각은 반응온도 147℃, 산 농도 2.8%, 반응시간 21 min에 상응한다. Fig. 1은 반응온도 (X1), 산 농도 (X3), 반응시간 (X2)를 각각 독립변수로 설정한 반응표면을 나타내고 있으며 7.58 g/L (자일로스 수용 78%)의 최대 농도의 자일로스 수용을 나타내었다.

Table 3. Three-variable, three-level fractional factorial design for the pepper stem hydrolysis

<table>
<thead>
<tr>
<th>Independence Variables</th>
<th>Dependent Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coded Value</td>
<td>Real Value</td>
</tr>
<tr>
<td>X1 : T</td>
<td>X2 : AC</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccccc}
-1.732 & 0 & 0 & 142.88 & 2 & 15 & 54.38 \\
-1 & 1 & 0 & 150 & 1.5 & 15 & 55.65 \\
-1 & 0 & -1 & 150 & 2 & 10 & 64.6 \\
-1 & 1 & 1 & 150 & 2.5 & 20 & 67.52 \\
1 & 0 & 1 & 160 & 2 & 6.34 & 66.26 \\
-1 & 1 & 0 & 160 & 2.5 & 10 & 60.49 \\
-1.732 & 0 & 160 & 1.134 & 15 & 52.46 \\
0 & 1.732 & 0 & 160 & 2.866 & 15 & 63.14 \\
0 & 0 & 160 & 2 & 15 & 58.02 \\
0 & 0 & 160 & 2 & 15 & 66.4 \\
0 & 0 & 160 & 2 & 15 & 68.41 \\
0 & -1 & 1 & 160 & 1.5 & 20 & 63.41 \\
0 & 0 & 1.732 & 160 & 2 & 23.66 & 56.66 \\
1 & -1 & -1 & 170 & 1.5 & 10 & 43.56 \\
1 & 0 & 1 & 170 & 2 & 20 & 48.02 \\
1 & 1 & 0 & 170 & 2.5 & 15 & 41.9 \\
1.732 & 0 & 177.32 & 2 & 15 & 33.12 \\
\end{array}
\]

T = temperature, AC = acid concentration, t = reaction time.
물질수지

고추대 자일로즈 분말공정 후 구성 성분의 변화를 Table 4에 나타내었다. 자일로즈 분말공정 후의 고형성분의 약 38%가 액화되었다. 전류 고형 성분을 분석하여 초기 건조 분석 물과 비교한 결과 글루칸이 약 54%로 전체의 89.95%가 관여되어 있었던 반면 자일판 성분은 2.45%로 약 89%가 액화되어 가수분해액으로 추출되었다. 리고난과 회분 성분은 각각 28.25%, 1.35%로 리고난은 45.02%, 회분은 75.86%가 추출되어 고형분으로부터 제거되었다. 또한 가수 분해액에는 2.6%의 글루칸과 10.85%의 자일란이 함유되어 있었으며, 따라서 전체 물질수지를 비교하면, 글루칸의 총 함량은 95.42%, 자일란의 총 함량은 88.68%로 각각 4.58%, 11.32%의 순서로 보였다. 글루칸과 자일란의 순서는 자일로즈 분말공정에서의 농도의 차로 인해 영향을 통해 퍼필, 5-HMF, 레블린산, 포름산 등의 과분해물로 전환된 것으로 사료된다(17-19).

Table 4. Composition of solid and hydrolyzate of pepper stem

<table>
<thead>
<tr>
<th>sample</th>
<th>weight remaining</th>
<th>Solid</th>
<th>Liquid</th>
<th>Material balance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glucan Xylan K.Glucan ash</td>
<td>Glucan Xylan Glucan Xylan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>36.91 13.96 32.01 3.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>treated</td>
<td>53.97 2.45 28.25 1.35 2.8 10.85 95.42 88.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>treated</td>
<td>33.62 1.53 17.6 0.84 (-4.58) (-11.32)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>component retention (%)</td>
<td>89.95 10.89 54.88 24.14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

이미지 분석

SEM (Scanning Electron Microscope) 분석

물질을 이용한 고추대 자일로즈 분말공정을 통해 고추대의 구조 변화를 관찰하기 위해 SEM을 이용하여 가수분해 전 후의 고추대의 구조를 확인하였다.
Fig. 3은 SEM (Quanta200, FEI, USA) 이미지 분석을 통해 봉은 황산을 이용한 산 가수분해 후의 시료의 형태를 분석한 결과를 보여주고 있다. 이 결과는 Fig. 3(a)에서 평평한 모양의 고추대 시료의 표면이 산 가수분해 후에는 Fig. 3(b)에서는 부서지고 녹아서 없어진 표면의 모양을 보이고 있다. 이는 봉은 황산을 이용한 자일로즈 분열공정을 통해서 일부 섬유성 기질의 반성유소가 분해되어 추출 예상으로 용해되었음을 가시적으로 관찰하게 한다.

XRD (X-RAY Diffractometer System) 분석

Fig. 4의 XRD 분석 (MAX-2500V, Rigaku Co., Japan)을 통해 2θ 범위 18.7°~22.5°에서 섬유소의 Intensity 값을 측정하였다. 최적반응조건에서의 봉은 황산을 이용한 자일로즈 분열 후의 시료와 전 시료의 CrI (Crystallinity index) 값을 각각 44.77, 33.49로 나타났다. 자일로즈 분열 최적화 공정에서 자일로즈 분열 된 시료의 섬유소의 CrI (Crystallinity index)값이 자일로즈 분열 전 시료보다 33.7% 더 높게 나타난 이유는 봉은 산 전처리 공정을 통해 섬유성을 둘러싸고 있던 반성유소의 비결정질의 구조들이 제거되어 섬유소의 결정화도가 높게 측정된 것으로 판단되었다.

![Fig. 4. Analysis of XRD (X-ray diffraction spectra) The specimen was scanned from 2θ = 10° to 80° with a step size of 2°.](image)

요 약

본 연구에서는 반응표면분석법 (RSM)을 따른 고주 대의 봉은 황산을 이용한 자일로즈 분열 공정을 통해 고수대 시료로부터 최적의 자일로즈 수율을 얻을 수 있는 반응 조건을 예측할 수 있었다. 실제 실험 결과 최적 반응온은 온도 147℃, 산 농도 2.8% H2SO4, 반응시간 21 min.를 알 수 있었고 최적 조건에서의 실험결과는 예측 값 78%보다 약 7% 낮은 71% 자일로즈 수율을 얻을 수 있었다. SEM과 XRD분석을 통해 전처리 전후의 시료의 이미지 분석을 하여 산 전처리 공정을 통해 섬유소 기질의 다른 성분인 반 성유소가 분해되어 추출예상으로 자일로즈로 용해 되었음을 가시적으로 확인 할 수 있었고 전처리 후 고용태의 결정화도가 전처리 전보다 증가하였음을 확인 할 수 있었다. 이로서 비결정질 물질인 반성유소와 기타 성분 들이 봉은 황산을 이용한 자일로즈 분열공정에 의해 분리 되었음을 확인하였다.

감 사

이 연구는 단국대학교 대학원 연구보조장학금의 지원으 로 이루어진 것임.

접수 : 2009년 5월 18일, 게재승인 : 2009년 6월 26일

REFERENCES

biofuel productivity and processing, *Biofuels Bioproducts and Biorefining* 1, 135-146.

