DOI QR코드

DOI QR Code

Ape1/Ref-1 Stimulates GDNF/GFR ${\alpha}$ 1-mediated Downstream Signaling and Neuroblastoma Proliferation

  • Kang, Mi-Young (Department of Pharmacology, DNA Repair Center, Chosun University School of Medicine) ;
  • Kim, Kweon-Young (Department of Rehabilitation, Chosun University Hospital) ;
  • Yoon, Young (Department of Pharmacology, DNA Repair Center, Chosun University School of Medicine) ;
  • Kang, Yoon-Sung (Department of Pharmacology, DNA Repair Center, Chosun University School of Medicine) ;
  • Kim, Hong-Beum (Department of Pharmacology, DNA Repair Center, Chosun University School of Medicine) ;
  • Youn, Cha-Kyung (Department of Pharmacology, DNA Repair Center, Chosun University School of Medicine) ;
  • Kim, Dong-Hui (Department of Orthopaedic Surgery, Chosun University Hospital) ;
  • Kim, Mi-Hwa (Department of Pharmacology, DNA Repair Center, Chosun University School of Medicine)
  • Published : 2009.10.31

Abstract

We previously reported that glial cell line-derived neurotropic factor (GDNF) receptor ${\alpha}$ 1 (GFR ${\alpha}$ 1) is a direct target of apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1). In the present study, we further analyzed the physiological roles of Ape1/Ref-1-induced GFR ${\alpha}$ 1 expression in Neuro2a mouse neuroblastoma cells. Ape1/Ref-1 expression caused the clustering of GFR ${\alpha}$ 1 immunoreactivity in lipid rafts in response to GDNF. We also found that Ret, a downstream target of GFR ${\alpha}$ 1, was functionally activated by GDNF in Ape1/Ref-1-expressing cells. Moreover, GDNF promoted the proliferation of Ape1/Ref-1-expressing Neuro2a cells. Furthermore, GFR ${\alpha}$ 1-specific RNA experiments demonstrated that the downregulation of GFR ${\alpha}$ 1 by siRNA in Ape1/Ref-1-expressing cells impaired the ability of GDNF to phosphorylate Akt and PLC ${\gamma}$-1 and to stimulate cellular proliferation. These results show an association between Ape1/Ref-1 and GDNF/GFR ${\alpha}$ signaling, and suggest a potential molecular mechanism for the involvement of Ape1/Ref-1 in neuronal proliferation.

Keywords

References

  1. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3: 383−394, 2002 https://doi.org/10.1038/nrn812
  2. Airaksinen MS, Titievsky A, Saarma M. GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci 13: 313−325, 1999 https://doi.org/10.1006/mcne.1999.0754
  3. Anderson RG. The caveolae membrane system. Annu Rev Biochem 67: 199−225, 1998 https://doi.org/10.1146/annurev.biochem.67.1.199
  4. Besset V, Scott RP, Ibanez CF. Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem 275: 39159−39166, 2000 https://doi.org/10.1074/jbc.M006908200
  5. obola MS, Finn LS, Ellenbogen RG, Geyer JR, Berger MS, Braga JM, Meade EH, Gross ME, Silber JR. Apurinic/apyrimidinic endonuclease activity is associated with response to radiation and chemotherapy in medulloblastoma and primitive neuroectodermal tumors. Clin Cancer Res 11: 7405−7414, 2005 https://doi.org/10.1158/1078-0432.CCR-05-1068
  6. Borrello MG, Alberti L, Arighi E, Bongarzone I, Battistini C, Bardelli A, Pasini B, Piutti C, Rizzetti MG, Mondellini P, Radice MT, Pierotti MA. The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase C$\gamma$. Mol Cell Biol 16: 2151−2163, 1996
  7. Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A. GFR$\alpha$1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21: 53−62, 1998 https://doi.org/10.1016/S0896-6273(00)80514-0
  8. Chattopadhyay R, Das S, Maiti AK, Boldogh I, Xie J, Hazra TK, Kohno K, Mitra S, Bhakat KK. Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1. Mol Cell Biol 28: 7066−7080, 2008 https://doi.org/10.1128/MCB.00244-08
  9. Chiarini LB, Freitas FG, Petrs-Silva H, Linden R. Evidence that the bifunctional redox factor / AP endonuclease Ref-1 is an anti-apoptotic protein associated with differentiation in the developing retina. Cell Death Differ 7: 272−281, 2000 https://doi.org/10.1038/sj.cdd.4400639
  10. Coulpier M, Anders J, Ibanez CF. Coordinated activation of autophosphorylation sites in the RET receptor tyrosine kinase: importance of tyrosine 1062 for GDNF mediated neuronal differentiation and survival. J Biol Chem 277: 1991−1999, 2002 https://doi.org/10.1074/jbc.M107992200
  11. Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M. GDNF signalling through the Ret receptor tyrosine kinase. Nature 381: 789−793, 1996 https://doi.org/10.1038/381789a0
  12. Edwards M, Rassin DK, Izumi T, Mitra S, Perez-Polo JR. APE/Ref-1 responses to oxidative stress in aged rats. J Neurosci Res 54: 635−638, 1998 https://doi.org/10.1002/(SICI)1097-4547(19981201)54:5<635::AID-JNR8>3.0.CO;2-H
  13. Ernsberger U. The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons. Cell Tissue Res 333: 353−371, 2008 https://doi.org/10.1007/s00441-008-0634-4
  14. Fantini D, Vascotto C, Deganuto M, Bivi N, Gustincich S, Marcon G, Quadrifoglio F, Damante G, Bhakat KK, Mitra S, Tell G. APE1/Ref-1 regulates PTEN expression mediated by Egr-1. Free Radic Res 42: 20−29, 2008 https://doi.org/10.1080/10715760701765616
  15. Fishel ML, He Y, Reed AM, Chin-Sinex H, Hutchins GD, Mendonca MS, Kelley MR. Knockdown of the DNA repair and redox signaling protein Ape1/Ref-1 blocks ovarian cancer cell and tumor growth. DNA Repair (Amst) 7: 177−186, 2008 https://doi.org/10.1016/j.dnarep.2007.09.008
  16. Fung H, Demple B. A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells. Mol Cell 17: 463−470, 2005 https://doi.org/10.1016/j.molcel.2004.12.029
  17. Fung H, Liu P, Demple B. ATF4-dependent oxidative induction of the DNA repair enzyme Ape1 counteracts arsenite cytotoxicity and suppresses arsenite-mediated mutagenesis. Mol Cell Biol 27: 8834−8847, 2007 https://doi.org/10.1128/MCB.00974-07
  18. Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380: 252−255, 1996 https://doi.org/10.1038/380252a0
  19. Hong M, Mukhida K, Mendez I. GDNF therapy for Parkinson's disease. Expert Rev Neurother 8: 1125−1139, 2008 https://doi.org/10.1586/14737175.8.7.1125
  20. Iwamori M, Shimomura J, Nagai Y. Specific binding of cholera toxin to rat erythrocytes revealed by analysis with a fluorescence- activated cell sorter. J Biochem 97: 729−735, 1985 https://doi.org/10.1093/oxfordjournals.jbchem.a135112
  21. Jiang Y, Guo C, Vasko MR, Kelley MR. Implications of apurinic/apyrimidinic endonuclease in reactive oxygen signaling response after cisplatin treatment of dorsal root ganglion neurons. Cancer Res 68: 6425−6434, 2008 https://doi.org/10.1158/0008-5472.CAN-08-1173
  22. Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R, Louis JC, Hu S, Altrock BW, Fox GM. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85: 1113−1124, 1996 https://doi.org/10.1016/S0092-8674(00)81311-2
  23. Kim MH, Kim HB, Acharya S, Sohn HM, Jun JY, Chang IY, You HJ. Ape1/Ref-1 induces glial cell-derived neurotropic factor (GDNF) responsiveness by upregulating GDNF receptor alpha1 expression. Mol Cell Biol 29: 2264−2277, 2009 https://doi.org/10.1128/MCB.01484-08
  24. Kirik D, Georgievska B, Bjorklund A. Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci 7: 105−110, 2004 https://doi.org/10.1038/nn1175
  25. Kisby GE, Milne J, Sweatt C. Evidence of reduced DNA repair in amyotrophic lateral sclerosis brain tissue. Neuroreport 8: 1337−1340, 1997 https://doi.org/10.1097/00001756-199704140-00004
  26. Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen CN. GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16: 509−521, 2005 https://doi.org/10.1089/hum.2005.16.509
  27. Larsen E, Meza TJ, Kleppa L, Klungland A. Organ and cell specificity of base excision repair mutants in mice. Mutat Res 614: 56−68, 2007 https://doi.org/10.1016/j.mrfmmm.2006.01.023
  28. Lewen A, Sugawara T, Gasche Y, Fujimura M, Chan PH. Oxidative cellular damage and the reduction of APE/Ref-1 expression after experimental traumatic brain injury. Neurobiol Dis 8: 380−390, 2001 https://doi.org/10.1006/nbdi.2001.0396
  29. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130−1132, 1993 https://doi.org/10.1126/science.8493557
  30. Liu H, Colavitti R, Rovira II, Finkel T. Redox-dependent transcriptional regulation. Circ Res 97: 967−974, 2005 https://doi.org/10.1161/01.RES.0000188210.72062.10
  31. McNeill DR, Lam W, DeWeese TL, Cheng YC, Wilson DM 3rd. Impairment of APE1 function enhances cellular sensitivity to clinically relevant alkylators and antimetabolites. Mol Cancer Res 7: 897−906, 2009 https://doi.org/10.1158/1541-7786.MCR-08-0519
  32. McNeill DR, Wilson DM 3rd. A dominant-negative form of the major human abasic endonuclease enhances cellular sensitivity to laboratory and clinical DNA-damaging agents. Mol Cancer Res 5: 61−70, 2007 https://doi.org/10.1158/1541-7786.MCR-06-0329
  33. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A. Renal and neuronal abnormalities in mice lacking GDNF. Nature 382: 76−79, 1996 https://doi.org/10.1038/382076a0
  34. Olkowski ZL. Mutant AP endonuclease in patients with amyotrophic lateral sclerosis. Neuroreport 9: 239−242, 1998 https://doi.org/10.1097/00001756-199801260-00012
  35. Ono Y, Matsumoto K, Furuta T, Ohmoto T, Akiyama K, Seki S. Relationship between expression of a major apurinic/apyrimidinic endonuclease (APEX nuclease) and susceptibility to genotoxic agents in human glioma cell lines. J Neurooncol 25: 183−192, 1995 https://doi.org/10.1007/BF01053151
  36. Paratcha G, Ledda F. GDNF and GFR$\alpha$: a versatile molecular complex for developing neurons. Trends Neurosci 31: 384−391, 2008 https://doi.org/10.1016/j.tins.2008.05.003
  37. Paratcha G, Ledda F, Baars L, Coulpier M, Besset V, Anders J, Scott R, Ibanez CF. Released GFR$\alpha$1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts. Neuron 29: 171−184, 2001 https://doi.org/10.1016/S0896-6273(01)00188-X
  38. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382: 73−76, 1996 https://doi.org/10.1038/382073a0
  39. Pong K, Xu RY, Baron WF, Louis JC, Beck KD. Inhibition of phosphatidylinositol 3-kinase activity blocks cellular differentiation mediated by glial cell line-derived neurotrophic factor in dopaminergic neurons. J Neurochem 71: 1912−1919, 1998 https://doi.org/10.1046/j.1471-4159.1998.71051912.x
  40. Rass U, Ahel I, West SC. Defective DNA repair and neurodegenerative disease. Cell 130: 991−1004, 2007 https://doi.org/10.1016/j.cell.2007.08.043
  41. Saarma M, Sariola H. Other neurotrophic factors: glial cell line-derived neurotrophic factor (GDNF). Microsc Res Tech 45: 292−302, 1999 https://doi.org/10.1002/(SICI)1097-0029(19990515/01)45:4/5<292::AID-JEMT13>3.0.CO;2-8
  42. Sakurai M, Nagata T, Abe K, Horinouchi T, Itoyama Y, Tabayashi K. Oxidative damage and reduction of redox factor-1 expression after transient spinal cord ischemia in rabbits. J Vasc Surg 37: 446−452, 2003 https://doi.org/10.1067/mva.2003.100
  43. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382: 70−73, 1996 https://doi.org/10.1038/382070a0
  44. Sariola H, Saarma M. Novel functions and signalling pathways for GDNF. J Cell Sci 116: 3855−3862, 2003 https://doi.org/10.1242/jcs.00786
  45. Tan Z, Sun N, Schreiber SS. Immunohistochemical localization of redox factor-1 (Ref-1) in Alzheimer's hippocampus. Neuroreport 9: 2749−2752, 1998 https://doi.org/10.1097/00001756-199808240-00012
  46. Tansey MG, Baloh RH, Milbrandt J, Johnson EM. GFR$\alpha$- mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 25: 611−623, 2000 https://doi.org/10.1016/S0896-6273(00)81064-8
  47. Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, Olson L. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373: 335−339, 1995 https://doi.org/10.1038/373335a0
  48. Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A. Characterization of a multicomponent receptor for GDNF. Nature 382: 80−83, 1996 https://doi.org/10.1038/382080a0
  49. Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM. Lipid rafts in neuronal signaling and function. Trends Neurosci 25: 412−417, 2002 https://doi.org/10.1016/S0166-2236(02)02215-4
  50. Vasko MR, Guo C, Kelley MR. The multifunctional DNA repair/redox enzyme Ape1/Ref-1 promotes survival of neurons after oxidative stress. DNA Repair (Amst) 4: 367−379, 2005 https://doi.org/10.1016/j.dnarep.2004.11.006
  51. Walton M, Lawlor P, Sirimanne E, Williams C, Gluckman P, Dragunow M. Loss of Ref-1 protein expression precedes DNA fragmentation in apoptotic neurons. Brain Res Mol Brain Res 44: 167−170, 1997 https://doi.org/10.1016/S0169-328X(96)00291-4
  52. Wang D, Luo M, Kelley MR. Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol Cancer Ther 3: 679−686, 2004
  53. Wilson TM, Rivkees SA, Deutsch WA, Kelley MR. Differential expression of the apurinic / apyrimidinic endonuclease (APE/ref-1) multifunctional DNA base excision repair gene during fetal development and in adult rat brain and testis. Mutat Res 362: 237−248, 1996 https://doi.org/10.1016/0921-8777(95)00053-4
  54. Xanthoudakis S, Curran T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. Embo J 11: 653−665, 1992
  55. Xanthoudakis S, Smeyne RJ, Wallace JD, Curran T. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc Natl Acad Sci USA 93: 8919−8923, 1996 https://doi.org/10.1073/pnas.93.17.8919
  56. Xiang DB, Chen ZT, Wang D, Li MX, Xie JY, Zhang YS, Qing Y, Li ZP, Xie J. Chimeric adenoviral vector Ad5/F35-mediated APE1 siRNA enhances sensitivity of human colorectal cancer cells to radiotherapy in vitro and in vivo. Cancer Gene Ther 15: 625−635, 2008 https://doi.org/10.1038/cgt.2008.30
  57. Yang ZZ, Chen XH, Wang D. Experimental study enhancing the chemosensitivity of multiple myeloma to melphalan by using a tissue-specific APE1-silencing RNA expression vector. Clin Lymphoma Myeloma 7: 296−304, 2007 https://doi.org/10.3816/CLM.2007.n.006

Cited by

  1. GFRA1: A Novel Molecular Target for the Prevention of Osteosarcoma Chemoresistance vol.19, pp.4, 2018, https://doi.org/10.3390/ijms19041078
  2. APE1 stimulates EGFR-TKI resistance by activating Akt signaling through a redox-dependent mechanism in lung adenocarcinoma vol.9, pp.11, 2009, https://doi.org/10.1038/s41419-018-1162-0