DOI QR코드

DOI QR Code

Arachidonic Acid Activates $K^+$-$Cl^-$-cotransport in HepG2 Human Hepatoblastoma Cells

  • Published : 2009.10.31

Abstract

$K^+$-$Cl^-$-cotransport (KCC) has been reported to have various cellular functions, including proliferation and apoptosis of human cancer cells. However, the signal transduction pathways that control the activity of KCC are currently not well understood. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signal in the regulatory mechanism of KCC activity. Exogenous application of AA significantly induced $K^+$ efflux in a dose-dependent manner, which was completely blocked by R-(+)-[2-n-butyl-6,7 -dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1Hinden-5-yl]oxy]acetic acid (DIOA), a specific KCC inhibitor. N-Ethylmaleimide (NEM), a KCC activatorinduced $K^+$ efflux was significantly suppressed by bromoenol lactone (BEL), an inhibitor of the calciumindependent $PLA_2$ ($iPLA_2$), whereas it was not significantly altered by arachidonyl trifluoromethylketone ($AACOCF_3$) and p-bromophenacyl bromide (BPB), inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. NEM increased AA liberation in a doseand time-dependent manner, which was markedly prevented only by BEL. In addition, the NEM-induced ROS generation was significantly reduced by DPI and BEL, whereas $AACOCF_3$ and BPB did not have an influence. The NEM-induced KCC activation and ROS production was not significantly affected by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, markedly produced ROS and activated the KCC. Collectively, these results suggest that $iPLA_2$-AA signal may be essentially involved in the mechanism of ROS-mediated KCC activation in HepG2 cells.

Keywords

References

  1. Adragna NC, Di Fulvio M, Lauf PK. Regulation of K-Cl cotransport: from function to genes. J Membr Biol 201: 109−137, 2004 https://doi.org/10.1007/s00232-004-0695-6
  2. Adragna NC, Ferrell CM, Zhang J, Di Fulvio M, Temprana CF, Sharma A, Fyffe RE, Cool DR, Lauf PK. Signal transduction mechanisms of $K^+$-$Cl^-$ cotransport regulation and relationship to disease. Acta Physiol (Oxf) 187: 125−139, 2006 https://doi.org/10.1111/j.1748-1716.2006.01560.x
  3. Adragna NC, White RE, Orlov SN, Lauf PK. K-Cl cotransport in vascular smooth muscle and erythrocytes: possible implication in vasodilation. Am J Physiol 278: C381−C390, 2000 https://doi.org/10.1152/ajpcell.2000.278.2.C381
  4. Amlal H, Paillard M, Bichara M. $Cl^-$-dependent ${NH_4}^+$ transport mechanisms in medullary thick ascending limb cells. Am J Physiol 267: C1607−C1615, 1994 https://doi.org/10.1152/ajpcell.1994.267.6.C1607
  5. Bize I, Munoz P, Canessa M, Dunham PB. Stimulation of membrane serine-threonine phosphatase in erythrocytes by hydrogen peroxide and staurosporine. Am J Physiol 274: C440−C446, 1998 https://doi.org/10.1152/ajpcell.1998.274.2.C440
  6. Block K, Ricono JM, Lee DY, Bhandari B, Choudhury GG, Abboud HE, Gorin Y. Arachidonic acid-dependent activation of a $p22^{phox}$- based NAD(P)H oxidase mediates angiotensin II-induced mesangial cell protein synthesis and fibronectin expression via Akt/PKB. Antioxid Redox Signal 8: 1497−1508, 2006 https://doi.org/10.1089/ars.2006.8.1497
  7. Choi SH, Langenbach R, Bosetti F. Genetic deletion or pharmacological inhibition of cyclooxygenase-1 attenuate lipopolysaccharide- induced inflammatory response and brain injury. FASEB J 22: 1491−1501, 2008 https://doi.org/10.1096/fj.07-9411com
  8. Cool RH, Merten E, Theiss C, Acker H. Rac1, and not Rac2, is involved in the regulation of the intracellular hydrogen peroxide level in HepG2 cells. Biochem J 332: 5−8, 1998 https://doi.org/10.1042/bj3320005
  9. Cossins AR, Gibson JS. Volume-sensitive transport systems and volume homeostasis in vertebrate red blood cells. J Exp Biol 200: 343−352, 1997
  10. Curnutte JT. Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system. J Clin Invest 75: 1740−1743, 1985 https://doi.org/10.1172/JCI111885
  11. Ehleben W, Porwol T, Fandrey J, Kummer W, Acker H. Cobalt and desferrioxamine reveal crucial members of the oxygen sensing pathway in HepG2 cells. Kidney Int 51: 483−491, 1997 https://doi.org/10.1038/ki.1997.67
  12. Ellison DH, Velazquez H, Wright FS. Stimulation of distal potassium secretion by low lumen chloride in the presence of barium. Am J Physiol 248: F638−F649, 1985
  13. Flatman PW, Adragna NC, Lauf PK. Role of protein kinases in regulating sheep erythrocyte K-Cl cotransport. Am J Physiol 271: C255−C263, 1996 https://doi.org/10.1152/ajpcell.1996.271.1.C255
  14. Garay RP, Nazaret C, Hannaert PA, Cragoe Jr. EJ. Demonstration of a $[K^+,Cl^-]$-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive $[Na^+,\;K^+,Cl^-]$-cotransport system. Mol Pharmacol 33: 696−701, 1988
  15. Gibson JS, Muzyamba MC, Ellory CJ. Effect of phenazine methosulphate on $K^+$ transport in human red cells. Cell Physiol Biochem 13: 329−336, 2003 https://doi.org/10.1159/000075120
  16. Greger R, Schlatter E. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Archiv 396: 325−334, 1983 https://doi.org/10.1007/BF01063938
  17. Harizi H, Corcuff JB, Gualde N. Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med 14: 461−469, 2008 https://doi.org/10.1016/j.molmed.2008.08.005
  18. Hii CS, Ferrante A. Regulation of the NADPH oxidase activity and anti-microbial function of neutrophils by arachidonic acid. Arch Immunol Ther Exp (Warsz) 55: 99−110, 2007 https://doi.org/10.1007/s00005-007-0014-x
  19. Hoshino S, Kikkawa S, Takahashi K, Itoh H, Kaziro Y, Kawasaki H, Suzuki K, Katada T, Ui M. Identification of sites for alkylation by N-ethylmaleimide and pertussis toxin-catalyzed ADP-ribosylation on GTP-binding proteins. FEBS Lett 276: 227−231, 1990 https://doi.org/10.1016/0014-5793(90)80548-W
  20. Hsu YM, Chen YF, Chou CY, Tang MJ, Chen JH, Wilkins RJ, Ellory JC, Shen MR. KCl cotransporter-3 down-regulates E- cadherin/beta-catenin complex to promote epithelial-mesenchymal transition. Cancer Res 67: 11064−11073, 2007a https://doi.org/10.1158/0008-5472.CAN-07-2443
  21. Hsu YM, Chou CY, Chen HH, Lee WY, Chen YF, Lin PW, Alper SL, Ellory JC, Shen MR. IGF-1 upregulates electroneutral K-Cl cotransporter KCC3 and KCC4 which are differentially required for breast cancer cell proliferation and invasiveness. J Cell Physiol 210: 626−636, 2007b https://doi.org/10.1002/jcp.20859
  22. Joiner CH. Cation transport and volume regulation in sickle red blood cells. Am J Physiol 264: C251−C270, 1993 https://doi.org/10.1152/ajpcell.1993.264.2.C251
  23. Kaji DM, Tsukitani Y. Role of protein phosphatase in activation of KCl cotransport in human erythrocytes. Am J Physiol 260: C176−C180, 1991 https://doi.org/10.1152/ajpcell.1991.260.1.C176
  24. Kehl SJ. Eicosatetraynoic acid (ETYA), a non-metabolizable analogue of arachidonic acid, blocks the fast-inactivating potassium current of rat pituitary melanotrophs. Can J Physiol Pharmacol 79: 338−345, 2001 https://doi.org/10.1139/cjpp-79-4-338
  25. Kim C, Dinauer MC. Impaired NADPH oxidase activity in $Rac_2$- deficient murine neutrophils does not result from defective translocation of $p47^{phox}$ and $p67^{phox}$ and can be rescued by exogenous arachidonic acid. J Biol Chem 79: 223−234, 2006
  26. Kim C, Kim JY, Kim JH. Cytosolic phospholipase $A_2$, lipoxygenase metabolites, and reactive oxygen species. BMB Rep 41: 555−559, 2008 https://doi.org/10.5483/BMBRep.2008.41.8.555
  27. Kim D, Nakamura A, Okamoto T, Komatsu N, Oda T, Iida T, Ishimatsu A, Muramatsu T. Mechanism of superoxide anion generation in the toxic red tide phytoplankton Chattonella marina: possible involvement of NAD(P)H oxidase. Biochim Biophys Acta 1524: 220−227, 2000 https://doi.org/10.1016/S0304-4165(00)00161-6
  28. Kim JA, Kang YS, Lee YS. Involvement of $K^+-Cl^-$-cotransport in the apoptosis induced by N-ethylmaleimide in HepG2 human hepatoblastoma cells. Eur J Pharmacol 418: 1−5, 2001 https://doi.org/10.1016/S0014-2999(01)00861-5
  29. Kim JA, Lee YS. Role of reactive oxygen species generated by NADPH oxidase in the mechanism of activation of $K^+-Cl^-$-cotransport by N-ethylmaleimide in HepG2 human hepatoma cells. Free Radic Res 35: 43−53, 2001 https://doi.org/10.1080/10715760100300581
  30. LaBel CP, Ischiopoulos H, Bondy SC. Evaluation of the probe 2',7'-dichlorofluorescin as indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5: 227−231, 1992 https://doi.org/10.1021/tx00026a012
  31. Lauf PK, Bauer J, Adragna NC, Fujise H, Zade-Oppen AMM, Ryu KH, Delpire E. Erythrocyte K-Cl cotransport: properties and regulation. Am J Physiol 263: C917−C932, 1992 https://doi.org/10.1152/ajpcell.1992.263.5.C917
  32. Leoncini G, Signorello MG. N-ethylmaleimide inhibition of thrombin- induced platelet aggregation. Biochem Pharmacol 58: 1293−1299, 1999a https://doi.org/10.1016/S0006-2952(99)00205-1
  33. Leoncini G, Signorello MG. N-ethylmaleimide-stimulated arachidonic acid release in human platelets. Biochem Pharmacol 57: 785−791, 1999b https://doi.org/10.1016/S0006-2952(98)00358-X
  34. Leslie CC. Regulation of arachidonic acid availability for eicosanoid production. Biochem Cell Biol 82: 1−17, 2004 https://doi.org/10.1139/o03-080
  35. Luchtefeld M, Drexler H, Schieffer B. 5-Lipoxygenase is involved in the angiotensin II-induced NAD(P)H-oxidase activation. Biochem Biophys Res Commun 308: 668−672, 2003 https://doi.org/10.1016/S0006-291X(03)01456-6
  36. Minta A, Tsien RY. Fluorescent indicators for cytosolic sodium. J Biol Chem 264: 19449−19457, 1989
  37. Muzyamba MC, Speake PF, Gibson JS. Oxidants and regulation of $K^+-Cl^-$ cotransport in equine red blood cells. Am J Physiol 271: C981−C989, 2000
  38. Narendra Sharath Chandra JN, Ponnappa KC, Sadashiva CT, Priya BS, Nanda BL, Gowda TV, Vishwanath BS, Rangappa KS. Chemistry and structural evaluation of different phospholipase $A_{2$ inhibitors in arachidonic acid pathway mediated inflammation and snake venom toxicity. Curr Top Med Chem 7: 787−800, 2007 https://doi.org/10.2174/156802607780487678
  39. Olivieri O, Vitoux D, Galacteros F, Bachir D, Blouquit Y, Beuzard Y, Brugnara C. Hemoglobin variants and activity of $(K^+-Cl^-)$ cotransport system in human erythrocytes. Blood 79: 793−797, 1992
  40. Perry PB, O'Neill WC. Swelling-activated K fluxes in vascular endothelial cells: volume regulation via K-Cl cotransport and K channels. Am J Physiol 265: C763−C769, 1993 https://doi.org/10.1152/ajpcell.1993.265.3.C763
  41. Ramanadham S, Song H, Bao S, Hsu FF, Zhang S, Ma Z, Jin C, Turk J. Islet complex lipids: involvement in the actions of group VIA calcium-independent phospholipase $A_2$ in beta-cells. Diabetes 53 Suppl 1: S179−185, 2004 https://doi.org/10.2337/diabetes.53.2007.S179
  42. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Latineen H, Lamsa K, Pirvola U, Saarma M, Kaila K. The $K^+-Cl^-$ co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397: 251−255, 1999 https://doi.org/10.1038/16697
  43. Shen HM, Shi CY, Ong CN. Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1. Free Rad Biol Med 21: 139-146, 1996 https://doi.org/10.1016/0891-5849(96)00019-6
  44. Shen MR, Lin AC, Hsu YM, Chang TJ, Tang MJ, Alper SL, Ellory JC, Chou CY. Insulin-like growth factor 1 stimulates KCl cotransport, which is necessary for invasion and proliferation of cervical cancer and ovarian cancer cells. J Biol Chem 279: 40017−40025, 2004 https://doi.org/10.1074/jbc.M406706200
  45. Shiose A, Sumimoto H. Arachidonic acid and phosphorylation synergistically induce a conformational change of $p47^{phox}$ to activate the phagocyte NADPH oxidase. J Biol Chem 275: 13793−13801, 2000 https://doi.org/10.1074/jbc.275.18.13793
  46. Starke LC, Jennings ML. K-Cl cotransport in rabbit red cells: further evidence for regulation by protein phosphatase type 1. Am J Physiol 264: C118−C124, 1993 https://doi.org/10.1152/ajpcell.1993.264.1.C118
  47. Stuart J, Ellory JC. Rheological consequences of erythrocyte dehydration. Br J Haematol 69: 1−4, 1988 https://doi.org/10.1111/j.1365-2141.1988.tb07593.x
  48. Tang DG, Chen YQ, Honn KV. Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis, Proc Natl Acad Sci USA 93: 5241−5246, 1996 https://doi.org/10.1073/pnas.93.11.5241
  49. Van Der Zee L, Nelemans A, Den Hertog A. Arachidonic acid is functioning as a second messenger in activating the $Ca^2+$ entry process on H1-histaminoceptor stimulation in DDT1 MF-2 cells. Biochem J 305: 859−864, 1995
  50. Waite M. Phospholipases. In: Vance DE, Vance JE ed, Biochemistry of Lipids, Lipoproteins and Membranes. 1st ed. Elsevier Science Publishing Co, New York, p 211−236, 1996
  51. Weaver YR, Cossins AR. Protein tyrosine phosphorylation and the regulation of KCl cotransport in trout erythrocytes. Pflugers Archiv 432: 727−734, 1996 https://doi.org/10.1007/s004240050191
  52. Weil-Maslansky E, Gutman Y, Sasson S. Insulin activates furosemide- sensitive $K^+$ and $Cl^-$ uptake system in BC3H1 cells. Am J Physiol 267: C932−C939, 1994 https://doi.org/10.1152/ajpcell.1994.267.4.C932
  53. Wolf MJ, Wang J, Turk J, Gross RW. Depletion of intracellular calcium stores activates smooth muscle cell calcium-independent phospholipase $A_{2$. A novel mechanism underlying arachidonic acid mobilization. J Biol Chem 272: 1522−1526 1997 https://doi.org/10.1074/jbc.272.3.1522
  54. Wong RK, Pettit AI, Quinn PA, Jennings SC, Davies JE, Ng LL. Advanced glycation end products stimulate an enhanced neutrophil respiratory burst mediated through the activation of cytosolic phospholipase $A_{2$and generation of arachidonic acid. Circulation 108: 1858−1864, 2003 https://doi.org/10.1161/01.CIR.0000089372.64585.3B
  55. Wurster S, Nakov R, Allgaier C, Hertting G. Involvement of N-ethylmaleimide-sensitive G proteins in the modulation of evoked $[^3H]$ noradrenaline release from rabbit hippocampus synaptosomes. Neurochem Int 17: 149−155, 1990 https://doi.org/10.1016/0197-0186(90)90137-I
  56. Yan GX, Chen J, Yamada KA, Kleber AG, Corr PB. Contribution of shrinkage of extracellular space to extracellular $K^+$ accumulation in myocardial ischaemia of the rabbit. J Physiol (London) 490: 215−228, 1996 https://doi.org/10.1113/jphysiol.1996.sp021137
  57. Yellaturu CR, Rao GN. A requirement for calcium-independent phospholipase $A_2$ in thrombin-induced arachidonic acid release and growth in vascular smooth muscle cells. J Biol Chem 278: 43831−43837, 2003 https://doi.org/10.1074/jbc.M301472200
  58. Zhang W, Wang Y, Chen CW, Xing K, Vivekanandan S, Lou MF. The positive feedback role of arachidonic acid in the platelet- derived growth factor-induced signaling in lens epithelial cells. Mol Vis 12: 821−831, 2006

Cited by

  1. Potentiation of Regulatory Volume Decrease by a P2-Like Receptor and Arachidonic Acid in American Alligator Erythrocytes vol.242, pp.2, 2011, https://doi.org/10.1007/s00232-011-9377-3
  2. Pro- and anti-oxidant effects of polyunsaturated fatty acid supplementation in HepG2 cells vol.85, pp.3, 2009, https://doi.org/10.1016/j.plefa.2011.07.005
  3. Histone acetylation and arachidonic acid cytotoxicity in HepG2 cells overexpressing CYP2E1 vol.387, pp.3, 2014, https://doi.org/10.1007/s00210-013-0942-4