DOI QR코드

DOI QR Code

Origin of Decreasing the Dielectric Constant and the Effect of Ionic Polarization

유전상수가 낮아지는 원인과 이온 분극의 효과

  • Oh, Teresa (School of Electronic and Information Engineering, Cheongj University)
  • Published : 2009.11.30

Abstract

SiOC film was deposited by the chemical vapor deposition using BTMSM and oxygen mixed precursor. The characteristic of SiOC film varied with increasing of the gas flow rate ratios. The dielectric constant was obtained by C-V measurement using the structure of metal/SiOC film/Si. The space effect due to the steric hindrance between alkyl group at terminal bond of Si-$CH_3$ made the pores, and increased the thickness. However, the SiOC film due to the lowering of the polarization decreased the thickness and then decreased the dielectric constant. After annealing process, the dielectric constant decreased because of the evaporation of the OH or $H_2O$ sites. The thickness was related to the lowering of the dielectric constant by the reduction of the polarization and the thickness decreased with the decrease of the dielectric constant. The refractive index was in inverse proportion to thickness. The trends of the thickness and refractive index did not change after annealing.

SiOC 박막을 BTMSM과 산소의 혼합가스를 사용하여 CVD 방법으로 증착하였다. 박막의 특성은 가스 유량비에 따라서 변하였다. 유전상수는 MIS 구조를 이용하여 C-V 측정법에 의하여 얻었다. 결합의 말단을 구성하는 Si-$CH_3$ 결합 사이의 공간효과에 의해서 기공이 만들어지며, 기공의 형성에 의해서 박막의 두께가 증가하였다. 그러나 분극의 감소에 의해서 만들어지는 SiOC 박막은 두께가 감소하면서 유전상수도 감소되었다. 열처리 후 유전상수는 수산기의 기화에 의해서 감소되었다. 박막의 두께는 분극의 감소에 의한 유전상수의 감소와 연관이 있었다. 굴절률은 박막의 두께에 반비례하는 경향성이 있으며, 박막의 두께와 굴절률의 경향성은 열처리 후에도 변하지 않았다.

Keywords

References

  1. A. Grill, Diamond and Related Materials. 10, 234 (2001) https://doi.org/10.1016/S0925-9635(00)00473-8
  2. A. Grill and D. A. Neumayer, J. Appl. Phys. 94, 6697 (2003) https://doi.org/10.1063/1.1618358
  3. Saravanapriyan Sriraman, Eray S. Aydil, and Dimitrios Maroudas, IEEE TRANSACTION ON PLASMA SCIENCE, 30, 112 (2002) https://doi.org/10.1109/TPS.2002.1003949
  4. 오데레사 대한전자공학회, 43, 322 (2006)
  5. Doo Sik Kim and Demetre J. Economou, IEEE TRANSACTION ON PLASMA SCIENCE, 30, 126 (2002) https://doi.org/10.1109/TPS.2002.1003956
  6. Kostya Ostrikov, E. Tsakadze, Jiang Ning, Z. Tsakadze, Long Jidong, R. Storer, and Shuyan Xu, IEEE TRANSAC-TION ON PLASMA SCIENCE, 30, 128 (2002) https://doi.org/10.1109/TPS.2002.1003957
  7. Teresa Oh, Kwang-Man Lee, Sung-Teak Ko, Kyung Sik Kim, Khi-Jung Ahn, and Chi Kyu Choi, Jpn. J. Appl. Phys. 42, 1517 (2003) https://doi.org/10.1143/JJAP.42.1517
  8. R. Navamathavan, Chang Young Kim, Heang Seuk Lee, Jong-Kwan Woo, Young hun Yu, Chi Kyu Choi, and Heon Ju Lee, J. Korean Phys. Soc. 55, 227 (2009) https://doi.org/10.3938/jkps.55.227
  9. G. Galli and R. M. Martin, Phys. Rev. Lett. 62(5), 555 (1999) https://doi.org/10.1103/PhysRevLett.62.555
  10. M. A. Tamor and C. H. Wu, 1990, J. Appl. Phys. 67(2), 1007 (1990) https://doi.org/10.1063/1.345808
  11. Jae yeong Heo, Hyeong Joon Kim, Jeong Hoon Han, and Jong Won Shon, Thin Solid Films, 515, 5035 (2007) https://doi.org/10.1016/j.tsf.2006.10.095
  12. Teresa Oh, J. Korean Phys. Soc. 52, 528 (2007)

Cited by

  1. The Electrical Properties and Unconfined Compression Strength of Bottom Ash vol.56, pp.1, 2014, https://doi.org/10.5389/KSAE.2014.56.1.021