DOI QR코드

DOI QR Code

Selective Epitaxy Growth of Multiple-Stacked InP/InGaAs on the Planar Type by Chemical Beam Epitaxy

화학적 빔 에피탁시에 의한 평면구조에서의 InP/InGaAs 다층구조의 선택적 영역 에피 성장

  • Han, Il-Ki (Nano Device Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jung-Il (Nano Device Research Center, Korea Institute of Science and Technology)
  • 한일기 (한국과학기술연구원, 나노소자연구센터) ;
  • 이정일 (한국과학기술연구원, 나노소자연구센터)
  • Published : 2009.11.30

Abstract

Selective area epitaxy of multiple-stacked InP/InGaAs structures were grown by chemical beam epitaxy. The width of top of the multiple-stacked InP/InGaAs layer which were selectively grown on the stripe lines parallel to the <011> direction was narrowed, while the width of top of the multiple-stacked InP/InGaAs layer on the stripe lines parallel to the <01-1> was widen. This difference according to the <011> and <01-1> direction was explained by the growth of InGaAs <311>A and B faces on the (100) InP surface on the stripe lines parallel to the <01-1> direction. Under growth rate of $1\;{\mu}m/h$, top of the multiple-stacked InP/InGaAs was flattened as the pressure of group V gas was decreased. This phenomenon was understood by the saturation of group V element on the surface.

Chemical beam epitaxy 성장법으로 InP/InGaAs 다층구조의 선택적 영역 에피성장 (selective area epitaxy)을 하였다. <011> 방향에 평행한 직선패턴에서는 선폭이 작아지고, <01-1> 방향에 평행한 직선패턴에서는 선폭이 증가하는 현상이 나타났는데 이는 InGaAs의 <311>A와 B면이 <01-1> 방향에 평행한 직선패턴에서 성장되었기 때문으로 설명되었다. 성장속도가 $1\;{\mu}m/h$인 조건에서 5족 가스의 압력이 감소할수록 (100) 면 위에서 평평한 에피층이 성장되었는데 이는 5족 가스의 과포화현상에 의한 3족 원소의 표면이동으로 설명하였다.

Keywords

References

  1. A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, G. Radhakrishnan, and G, J. Vacuum Sci. Technol. B. 25, 987 (2007) https://doi.org/10.1116/1.2723757
  2. E. G. P. de Jong, A. Hu, Y. N. Zhou, and J. Z. Wen, Material Science & Technology 2009, Oct. 25-29, Pittsburgh, USA.
  3. L. E. Jensen, M. T. Bjork, S. Jeppesen, A. I. Persson, B. J. Ohlsson, and L. Samuelson, Nano Lett. 4, 1961 (2004) https://doi.org/10.1021/nl048825k
  4. G. Radhakrishnan, A. Freundlich, and B. Fuhrmann, J. Crystal Growth 311, 1855 (2009) https://doi.org/10.1016/j.jcrysgro.2008.12.008
  5. R. Munden, A. Vacic, E. Castiglione, W. Guan, C. Broadbridge, and M. Reed, 2009 APS Mrach Meeting, March 16-20, 2009, Pittsburgh, USA.
  6. Y. Gao, S. Godefroy, J. L. Benchimol, F. Alaoui, F. Alexandre, and K. Rao, Surface and Interface Analysis 16, 36 (2004) https://doi.org/10.1002/sia.740160111
  7. O. Kayser, J. Crystal Growth 107, 989 (1991) https://doi.org/10.1016/0022-0248(91)90592-S
  8. M. S. Kim, C. Caneau, E. Colas, and R. Bhat, J. Crystal Growth 123, 69 (1992) https://doi.org/10.1016/0022-0248(92)90011-7
  9. T. H. Chiu, J. E. Cunningham, and A. Robertson, J. crystal Growth 95, 136 (1989) https://doi.org/10.1016/0022-0248(89)90366-7

Cited by

  1. Growth Temperature Effects of In0.4Al0.6As Buffer Layer on the Luminescence Properties of InGaAs/InAlAs Quantum Well Structures vol.20, pp.6, 2011, https://doi.org/10.5757/JKVS.2011.20.6.449
  2. Ethical Issues in Nanomaterials Technology and Relevant Policy Recommendations vol.19, pp.6, 2010, https://doi.org/10.5757/JKVS.2010.19.6.397