Multiple Residues in the P-Region and M2 of Murine Kir 2.1 Regulate Blockage by External $Ba^{2+}$

  • Lee, Young-Mee (Department of Physiology and Biophysics, Seoul National University, College of Medicine) ;
  • Thompson, Gareth A. (Department of Cell Physiology & Pharmacology, University of Leicester) ;
  • Ashmole, Ian (Department of Biological Sciences, University of Warwick) ;
  • Leyland, Mark (Department of Biochemistry, University of L:eicester) ;
  • So, In-Suk (Department of Physiology and Biophysics, Seoul National University, College of Medicine) ;
  • Stanfield, Peter R. (Department of Biological Sciences, University of Warwick)
  • Published : 2009.02.28

Abstract

We have examined the effects of certain mutations of the selectivity filter and of the membrane helix M2 on $Ba^{2+}$ blockage of the inward rectifier potassium channel, Kir 2.1. We expressed mutant and wild type murine Kir 2.1 in Chinese hamster ovary(CHO) cells and used the whole cell patch-clamp technique to record $K^+$ currents in the absence and presence of externally applied $Ba^{2+}$. Wild type Kir2.1 was blocked by externally applied $Ba^{2+}$ in a voltage and concentration dependent manner. Mutants of Y145 in the selectivity filter showed little change in the kinetics of $Ba^{2+}$ blockage. The estimated $K_d(0)$ was 108 ${\mu}M$ for Kir2.1 wild type, 124 ${\mu}M$ for a concatameric WT-Y145V dimer, 109 ${\mu}M$ for a WT-Y145L dimer, and 267 ${\mu}M$ for Y145F. Mutant channels T141A and S165L exhibit a reduced affinity together with a large reduction in the rate of blockage. In S165L, blockage proceeds with a double exponential time course, suggestive of more than one blocking site. The double mutation T141A/S165L dramatically reduced affinity for $Ba^{2+}$, also showing two components with very different time courses. Mutants D172K and D172R(lining the central, aqueous cavity of the channel) showed both a decreased affinity to $Ba^{2+}$ and a decrease in the on transition rate constant(${\kappa}_{on}$). These results imply that residues stabilising the cytoplasmic end of the selectivity filter(T141, S165) and in the central cavity(D172) are major determinants of high affinity $Ba^{2+}$ blockage in Kir 2.1.

Keywords

References

  1. Abrams CJ, Davies NW, Shelton PA, Stanfield PR. The role of a single aspartate residue in ionic selectivity and block of a murine inward rectifier $K^+$ channel Kir2.1. J Physiol 493: 643-649, 1996 https://doi.org/10.1113/jphysiol.1996.sp021411
  2. Alagem N, Dvir M, Reuveny E. Mechanism of $Ba^{2+}$ block of a mouse inwardly rectifying $K^+$ channel: differential contribution by two discrete residues. J Physiol 534: 381-393, 2001 https://doi.org/10.1111/j.1469-7793.2001.00381.x
  3. Dart C, Leyland ML, Barrett-Jolley R, Shelton PJ, Spencer PJ, Conley EC, Sutcliffe MJ, Stanfield PR. The dependence of $Ag+$ block of a potassium channel, murine Kir2.1, on a cysteine residue in the selectivity filter. J Physiol 511: 15-24, 1998 https://doi.org/10.1111/j.1469-7793.1998.015bi.x
  4. Doring F, Derst C, Wischmeyer E, Karschin C, Schneggenburger R, Daut J, Karschin A. The epithelial inward rectifier channel Kir7.1 displays unusual $K^+$ permeation properties. J Neurosci 18: 8625-8636, 1998
  5. Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, Mackinnon R. The structure of the potassium channel: molecular basis of $K^+$ conduction and selectivity. Science 280: 69-77, 1998 https://doi.org/10.1126/science.280.5360.69
  6. Duprat F, Lesage F, Fink M, Reyes R, Heurateaux C, Lazdunski M. TASK, a human background $K^+$ channel to sense external pH variations near physiological pH. EMBO J 17: 5464-5471, 1997
  7. Fakler B, Brandle U, Bond CH, Glowatzki E, Konig C, Adelman JP, Zenner HP, Ruppersberg JP. A structural determinant of differential sensitivity of cloned inward rectifier $K^+$ channels to intracellular spermine. FEBS Lett 356: 199-203, 1994 https://doi.org/10.1016/0014-5793(94)01258-X
  8. Fakler B, Brandle U, Glowatzki E, Weidemann S, Zenner HP, Ruppersberg JP. Strong voltage-dependent inward rectification of inward rectifier $K^+$ channels is caused by intracellular spermine. Cell 80: 149-154, 1995 https://doi.org/10.1016/0092-8674(95)90459-X
  9. Ficker E, Taglialatela M, WIBLE BA, Henley CM, Brown AM. Spermine and spermidine as gating molecules for inward rectifier $K^+$ channels. Science 266: 1068-1072, 1994 https://doi.org/10.1126/science.7973666
  10. Hagiwara S, Miyazaki S, Moody W, Patlak J. Blocking effects of barium and hydrogen ions on the potassium current during anomalous rectification in the starfish egg. J Physiol 279: 167-185, 1978 https://doi.org/10.1113/jphysiol.1978.sp012338
  11. Hagiwara S, Yoshii M. Effects of internal potassium and sodium on the anomalous rectification of the starfish egg as examined by internal perfusion. J Physiol 292: 251-265, 1979 https://doi.org/10.1113/jphysiol.1979.sp012849
  12. Harris RE, Larsson HP, Isakoff EY. A permanent ion binding site located between two gates of the Shaker $K^+$ channel. Biophys J 74: 1808-1820, 1998 https://doi.org/10.1016/S0006-3495(98)77891-9
  13. Heginbotham L, Lu Z, Abramson T, Mackinnon R. Mutations in the $K^+$ channel signature sequence. Biophys J 66: 1061-1067, 1994 https://doi.org/10.1016/S0006-3495(94)80887-2
  14. Hidalgo P, Mackinnon R. Revealing the architecture of a $K^+$ channel pore through mutant cycles with a peptide inhibitor. Science 268: 307-310, 1995 https://doi.org/10.1126/science.7716527
  15. Hurst RS, Toro L, Stefani E. Molecular determinants of external barium block in Shaker potassium channels. FEBS Lett 388: 59-65, 1996 https://doi.org/10.1016/0014-5793(96)00516-9
  16. Jiang Y, Mackinnon R. The barium site in a potassium channel by x-ray crystallography. J Gen Physiol 115: 269-272, 2000 https://doi.org/10.1085/jgp.115.3.269
  17. Krapivinsky G, Medina I, Eng L, Krapivinsky L, Yang Y, Clapham DE. A novel inward rectifier $K^+$ channel with unique pore properties. Neuron 20: 995-1005, 1998 https://doi.org/10.1016/S0896-6273(00)80480-8
  18. Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82: 488-492, 1985 https://doi.org/10.1073/pnas.82.2.488
  19. Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300: 1922-1926, 2003 https://doi.org/10.1126/science.1085028
  20. Lancaster MK, Dibb KM, Quinn CC, Leach R, Lee JK, Findlay JB, Boyett MR. Residues and mechanisms for slow activation and $Ba^{2+}$ block of the cardiac muscarinic $K^+$ channel, Kir3.1/Kir3.4. J Biol Chem 275: 35831-35839, 2000 https://doi.org/10.1074/jbc.M006565200
  21. Lee YM, Yang DK, Ashmole I, Stanfield PR, So I, Kim KW. Residues lining the pore region of the murine inward rectifier $K^+$ channel (KIR2.1) control $K^+$ blockage. Biophysical J 80: 631A, 2001
  22. Leech CA, Stanfield PR. Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. J Physiol 319: 295-309, 1981 https://doi.org/10.1113/jphysiol.1981.sp013909
  23. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romely G, Barhanin J. TWIK-1, a ubiquitous human weakly inward rectifying $K^+$ channel with a novel structure. EMBO J 15: 1004-1011, 1996
  24. Lockless SW, Zhou M, Mackinnon R. Structural and thermodynamic properties of selective ion binding in a $K^+$ channel. PLoS Biology 5: 1079-1088, 2007
  25. Lopatin AN, Makhina EN, Nichols CG. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372: 366-369, 1994 https://doi.org/10.1038/372366a0
  26. Lopatin AN, Makhina EN, Nichols CG. The mechanism of inward rectification of potassium channels: 'long-pore plugging' by cytoplasmic polyamines. J Gen Physiol 106: 923-955, 1995 https://doi.org/10.1085/jgp.106.5.923
  27. Lopatin AN, Nichols CG. '$K^+$' Dependence of polyamine-induced rectification in inward rectifier potassium channels (IRK1, Kir2.1). J Gen Physiol 108: 105-113, 1996 https://doi.org/10.1085/jgp.108.2.105
  28. Lu T, Ting AY, Mainland J, Jan LY, Schultz PG, Yang J. Probing ion permeation and gating in a $K^+$ channel with backbone mutations in the selectivity filter. Nature Neurosci 4: 239-246, 2001 https://doi.org/10.1038/85080
  29. Matsuda H, Saigusa A, Irisawa H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal $Mg^{2+}$. Nature 325: 156-159, 1987 https://doi.org/10.1038/325156a0
  30. Minor DL, Masseling SJ, Jan YN, Jan LY. Transmembrane structure of an inwardly rectifying potassium channel. Cell 96: 879-891, 1999 https://doi.org/10.1016/S0092-8674(00)80597-8
  31. Navaratnam DS, Escobar L, Covarrubias M, Oberholtzer JC. Permeation properties and differential expression across the auditory receptor epithelium of an inward rectifier $K^+$ channel cloned from the chick inner ear. J Biol Chem 270: 19238-19245, 1995 https://doi.org/10.1074/jbc.270.33.19238
  32. Neyton J, Miller C. Potassium blocks barium permeation through a calcium-activated potassium channel. J Gen Physiol 92: 549-567, 1988a https://doi.org/10.1085/jgp.92.5.549
  33. Neyton J, Miller C. Discrete $Ba^{2+}$ block as a probe of ion occupancy and pore structure in the high conductance $Ca^{2+}$ activated $K^+$ channel. J Gen Physiol 92: 569-586, 1988b https://doi.org/10.1085/jgp.92.5.569
  34. Nishida M, Cadene M, Chait BT, Mackinnon R. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J 26: 4005-4015, 2007 https://doi.org/10.1038/sj.emboj.7601828
  35. Reuveny E, Jan YN, Jan LY. Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying $K^+$ channel to $K^+$-selective permeation. Biophys J 70: 754-761, 1996 https://doi.org/10.1016/S0006-3495(96)79615-7
  36. Sabirov RZ, Tominaga T, Miwa A, Okada Y, Oiki S. A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers. J Gen Physiol 110: 665-677, 1997 https://doi.org/10.1085/jgp.110.6.665
  37. Shieh RC, Chang JC, Arreola J. Interaction of $Ba^{2+}$ with the pores of the cloned inward rectifier $K^+$ channels Kir2.1 expressed in Xenopus oocytes. Biophys J 75: 2313-2322, 1998 https://doi.org/10.1016/S0006-3495(98)77675-1
  38. Shioya T, Matsuda H, Noma A. Fast and slow blockades of the inward-rectifier $K^+$ channel by external divalent cations in guinea-pig cardiac myocytes. Pflügers Arch 422: 427-435, 1993 https://doi.org/10.1007/BF00375067
  39. So I, Ashmole I, Davies NW, Sutcliffe MJ, Stanfield PR. The $K^+$ channel signature sequence of murine Kir2.1: mutations that affect microscopic gating but not ionic selectivity. J Physiol 531: 37-50, 2001 https://doi.org/10.1111/j.1469-7793.2001.0037j.x
  40. So I, Ashmole I, Soh H, Park CS, Spencer PJ, Leyland M, Stanfield PR. Intrinsic gating in inward rectifier potassium channels (Kir2.1) with low polyamine affinity generated by site directed mutagenesis. Kor J Physiol Pharmacol 7: 131-142, 2003a
  41. So I, Ashmole I, Stanfield PR. The substates with mutants that negatively charged aspartate in position 172 was replaced with positive charge in murine inward rectifier potassium channel (murine Kir2.1). Kor J Physiol Pharmacol 7: 267-273, 2003b
  42. Standen NB, Stanfield PR. A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions. J Physiol 280: 169-191, 1978 https://doi.org/10.1113/jphysiol.1978.sp012379
  43. Stanfield PR, Davies NW, Shelton PA, Sutcliffe MJ, Khan IA, Brammar WJ, Conley EC. A single aspartate residue is involved in both intrinsic gating and blockage by $Mg^{2+}$ of the inward rectifier, IRK1. J Physiol 478: 1-6, 1994 https://doi.org/10.1113/jphysiol.1994.sp020225
  44. Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier $K^+$ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 145: 47-179, 2002 https://doi.org/10.1007/BFb0116431
  45. Thompson GA, Passmore GM, Spencer PJ, Davies NW, Stanfield PR. Blockage of inward rectifier potassium channels (murine Kir2.1) by $Ba^{2+}$ is influenced by an aspartate residue (D172). J Physiol 511P: 146P, 1998
  46. Thompson GA, Leyland ML, Ashmole I, Sutcliffe MJ, Stanfield PR. Residues beyond the selectivity filter of the $K^+$ channel Kir2.1 regulate permeation and block by external $Rb^+$ and $Cs^+$. J Physiol 526: 231-240, 2000a https://doi.org/10.1111/j.1469-7793.2000.00231.x
  47. Thompson GA, Leyland ML, Ashmole I, Stanfield PR. Residues in H5 and M2 of murine Kir2.1 regulate $Ba^{2+}$ block. J Physiol 526P: 10S, 2000b
  48. Topert C, Doring F, Wischmeyer E, Karschin C, Brockhaus J, Ballanyi K, Derst C, Karschin A. Kir2.4: a novel $K^+$ inward rectifier channel associated with motoneurons of cranial nerve nuclei. J Neurosci 18: 4096-4105, 1998
  49. Woodhull AM. Ionic blockage of sodium channels in nerve. J Gen Physiol 61: 687-708, 1973 https://doi.org/10.1085/jgp.61.6.687
  50. Yang J, Jan YN, Jan LY. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 15: 1441-1447, 1995 https://doi.org/10.1016/0896-6273(95)90021-7
  51. Zhou H, Chepilko S, Schutt W, Choe H, Palmer LG, Sackin H. Mutations in the pore region of ROMK enhance $Ba^{2+}$ block. Am J Physiol 271: C1949-C1956, 1996 https://doi.org/10.1152/ajpcell.1996.271.6.C1949