DOI QR코드

DOI QR Code

Regulatory Mechanism of Spindle Movements during Oocyte Meiotic Division

  • Ai, Jun-Shu (State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences) ;
  • Li, Mo (State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences) ;
  • Schatten, Heide (Department of Veterinary Pathobiology, University of Missouri-Columbia) ;
  • Sun, Qing-Yuan (State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences)
  • 발행 : 2009.11.01

초록

Female germ cell meiotic divisions are typically asymmetric, giving rise to two daughter cells with different sizes. Spindle movements including spindle migration from the oocyte center to the cortex and spindle rotation from parallel to perpendicular (typically in the mouse) at the cortex are crucial for these asymmetric divisions and therefore are crucial for gamete production. Different regulatory mechanisms for spindle movements have been determined in different species and a wide variety of different molecular components and processes that are involved in spindle movements have also been identified in different species. Here, we review the current state of knowledge as well as our understanding of mechanisms for spindle movements in different systems with focus on three main aspects: microtubules (MT), microfilaments (MF) and molecules associated with cytoskeletal organization as well as molecules that are not directly related to the cytoskeleton. How they might interact or function independently during female meiotic divisions in different species is discussed in detail.

키워드

참고문헌

  1. Ai, J. S., Q. Wang, M. Li, L. H. Shi, S. I. Ola, B. Xiong, S. Yin, D. Y. Chen and Q. Y. Sun. 2008a. Roles of microtubules and microfilaments in spindle movements during rat oocyte meiosis. J. Reprod. Dev. 54:391-396 https://doi.org/10.1262/jrd.20034
  2. Ai, J. S., Q. Wang, S. Yin, L. H. Shi, B. Xiong, Y. C. Ouyang, Y. Hou, D. Y. Chen, H. Schatten and Q. Y. Sun. 2008b. Regulation of peripheral spindle movement and spindle rotation during mouse oocyte meiosis: New Perspectives. Microsc. Microanal. 14:349-356
  3. Albertson, D. G. and J. N. Thomson. 1993. Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res. 1:15-26 https://doi.org/10.1007/BF00710603
  4. Alexandre, H., A. Van Cauwenberge and J. Mulnard. 1989. Involvement of microtubules and microfilaments in the control of the nuclear movement during maturation of mouse oocyte. Dev. Biol. 136:311-320 https://doi.org/10.1016/0012-1606(89)90258-3
  5. Bishop, A. L. and A. Hall. 2000. Rho GTPases and their effector proteins. Biochem. J. 348 Pt 2:241-255 https://doi.org/10.1042/0264-6021:3480241
  6. Bresnick, A. R. 1999. Molecular mechanisms of nonmuscle myosin-II regulation. Curr. Opin. Cell Biol. 11:26-33 https://doi.org/10.1016/S0955-0674(99)80004-0
  7. Calarco, P. G. 2005. The role of microfilaments in early meiotic maturation of mouse oocytes. Microsc. Microanal. 11:146-153
  8. Carvalho, P., M. L. Gupta, Jr., M. A. Hoyt and D. Pellman. 2004. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev. Cell 6:815-829 https://doi.org/10.1016/j.devcel.2004.05.001
  9. Cau, J., S. Faure, S. Vigneron, J. C. Labbe, C. Delsert and N. Morin. 2000. Regulation of Xenopus p21-activated kinase (XPAK2) by Cdc42 and maturation-promoting factor controls Xenopus oocyte maturation. J. Biol. Chem. 275:2367-2375 https://doi.org/10.1074/jbc.275.4.2367
  10. Chang, F., D. Drubin and P. Nurse. 1997. cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin. J. Cell Biol. 137:169-182 https://doi.org/10.1083/jcb.137.1.169
  11. Desai, A. and T. J. Mitchison. 1997. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13:83-117 https://doi.org/10.1146/annurev.cellbio.13.1.83
  12. Ding, D. Q., Y. Chikashige, T. Haraguchi and Y. Hiraoka. 1998. Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. J. Cell Sci. 111(Pt 6):701-712
  13. Donaldson, J. G., D. Finazzi and R. D. Klausner. 1992. Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360:350-352 https://doi.org/10.1038/360350a0
  14. Duchen, M. R. 2000. Mitochondria and calcium: from cell signalling to cell death. J. Physiol. 529 Pt 1:57-68 https://doi.org/10.1111/j.1469-7793.2000.00057.x
  15. Ducibella, T., D. Huneau, E. Angelichio, Z. Xu, R. M. Schultz, G. S. Kopf, R. Fissore, S. Madoux and J. P. Ozil. 2002. Egg-toembryo transition is driven by differential responses to Ca(2+) oscillation number. Dev. Biol. 250:280-291 https://doi.org/10.1006/dbio.2002.0788
  16. Dumollard, R., K. Hammar, M. Porterfield, P. J. Smith, C. Cibert, C. Rouviere and C. Sardet. 2003. Mitochondrial respiration and $Ca^{2+}$ waves are linked during fertilization and meiosis completion. Development 130:683-692 https://doi.org/10.1242/dev.00296
  17. Dumollard, R., P. Marangos, G. Fitzharris, K. Swann, M. Duchen and J. Carroll. 2004. Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development 131:3057-3067 https://doi.org/10.1242/dev.01181
  18. Dumont, J., K. Million, K. Sunderland, P. Rassinier, H. Lim, B. Leader and M. H. Verlhac. 2007. Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse oocytes. Dev. Biol. 301:254-265 https://doi.org/10.1016/j.ydbio.2006.08.044
  19. Duncan, F. E., S. B. Moss, R. M. Schultz and C. J. Williams. 2005. PAR-3 defines a central subdomain of the cortical actin cap in mouse eggs. Dev. Biol. 280:38-47 https://doi.org/10.1016/j.ydbio.2004.12.034
  20. Ellis, G. C., J. B. Phillips, S. O'Rourke, R. Lyczak and B. Bowerman. 2004. Maternally expressed and partially redundant beta-tubulins in Caenorhabditis elegans are autoregulated. J. Cell Sci. 117:457-464 https://doi.org/10.1242/jcs.00869
  21. Endow, S. A. and D. J. Komma. 1997. Spindle dynamics during meiosis in Drosophila oocytes. J. Cell Biol. 137:1321-1336 https://doi.org/10.1083/jcb.137.6.1321
  22. Etienne-Manneville, S. and A. Hall. 2003. Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr. Opin. Cell Biol. 15:67-72 https://doi.org/10.1016/S0955-0674(02)00005-4
  23. Etienne-Manneville, S. and A. Hall. 2002. Rho GTPases in cell biology. Nature 420:629-635 https://doi.org/10.1038/nature01148
  24. Evangelista, M., D. Pruyne, D. C. Amberg, C. Boone and A. Bretscher. 2002. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat. Cell Biol. 4:260-269 https://doi.org/10.1038/ncb770
  25. Fan, H. Y., L. J. Huo, X. Q. Meng, Z. S. Zhong, Y. Hou, D. Y. Chen and Q. Y. Sun. 2003. Involvement of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes. Biol. Reprod. 69:1552-1564 https://doi.org/10.1095/biolreprod.103.015685
  26. Feierbach, B. and F. Chang. 2001. Roles of the fission yeast formin for3p in cell polarity, actin cable formation and symmetric cell division. Curr. Biol. 11:1656-1665 https://doi.org/10.1016/S0960-9822(01)00525-5
  27. Gard, D. L. 1992. Microtubule organization during maturation of Xenopus oocytes: assembly and rotation of the meiotic spindles. Dev. Biol. 151:516-530 https://doi.org/10.1016/0012-1606(92)90190-R
  28. Gard, D. L., B. J. Cha and A. D. Roeder. 1995. F-actin is required for spindle anchoring and rotation in Xenopus oocytes: a reexamination of the effects of cytochalasin B on oocyte maturation. Zygote 3:17-26
  29. Gavin, R. H. 1997. Microtubule-microfilament synergy in the cytoskeleton. Int. Rev. Cytol. 173:207-242 https://doi.org/10.1016/S0074-7696(08)62478-X
  30. Goldstein, B. 1995. Cell contacts orient some cell division axes in the Caenorhabditis elegans embryo. J. Cell Biol. 129:1071-1080 https://doi.org/10.1083/jcb.129.4.1071
  31. Gonczy, P. 2002. Mechanisms of spindle positioning: focus on flies and worms. Trends Cell Biol. 12:332-339 https://doi.org/10.1016/S0962-8924(02)02306-1
  32. Grill, S. W., P. Gonczy, E. H. Stelzer and A. A. Hyman. 2001. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409:630-633 https://doi.org/10.1038/35054572
  33. Gueth-Hallonet, C., C. Antony, J. Aghion, A. Santa-Maria, I. Lajoie-Mazenc, M. Wright and B. Maro. 1993. gamma- Tubulin is present in acentriolar MTOCs during early mouse development. J. Cell Sci. 105(Pt 1):157-166 https://doi.org/10.1078/143446103322166509
  34. Gulyas, B. J. 1976. Ultrastructural observations on rabbit, hamster and mouse eggs following electrical stimulation in vitro. Am. J. Anat. 147:203-218 https://doi.org/10.1002/aja.1001470205
  35. Gundersen, G. G. and A. Bretscher. 2003. Cell biology. Microtubule asymmetry. Science 300:2040-2041 https://doi.org/10.1126/science.1084938
  36. Gunst, S. J. 2004. Actions by actin: reciprocal regulation of cortactin activity by tyrosine kinases and F-actin. Biochem. J. 380:e7-8 https://doi.org/10.1042/BJ20040559
  37. Halet, G. and J. Carroll. 2007. Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes. Dev. Cell 12:309-317 https://doi.org/10.1016/j.devcel.2006.12.010
  38. Hamaguchi, Y. 2001. Displacement of the mitotic apparatus which induces ectopic polar body formation or parthenogenetic cleavage in starfish oocytes. Dev. Biol. 239:364-375 https://doi.org/10.1006/dbio.2001.0421
  39. Hartman, J. J., J. Mahr, K. McNally, K. Okawa, A. Iwamatsu, S. Thomas, S. Cheesman, J. Heuser, R. D. Vale and F. J. McNally. 1998. Katanin, a microtubule-severing protein, is a novel AAAATPase that targets to the centrosome using a WD40-containing subunit. Cell 93:277-287 https://doi.org/10.1016/S0092-8674(00)81578-0
  40. Huisman, S. M. and M. Segal. 2005. Cortical capture of microtubules and spindle polarity in budding yeast - where's the catch? J. Cell Sci. 118:463-471 https://doi.org/10.1242/jcs.01650
  41. Hyman, A. A. 1989. Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position. J. Cell Biol. 109:1185-1193 https://doi.org/10.1083/jcb.109.3.1185
  42. Hyman, A. A. and E. Karsenti. 1996. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84:401-410 https://doi.org/10.1016/S0092-8674(00)81285-4
  43. Ibanez, E., D. F. Albertini and E. W. Overstrom. 2003. Demecolcine-induced oocyte enucleation for somatic cell cloning: coordination between cell-cycle egress, kinetics of cortical cytoskeletal interactions, and second polar body extrusion. Biol. Reprod. 68:1249-1258 https://doi.org/10.1095/biolreprod.102.008292
  44. Ishizaki, T., Y. Morishima, M. Okamoto, T. Furuyashiki, T. Kato and S. Narumiya. 2001. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nat. Cell Biol. 3:8-14 https://doi.org/10.1038/35050598
  45. Kaltschmidt, J. A., C. M. Davidson, N. H. Brown and A. H. Brand. 2000. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat. Cell Biol. 2:7-12 https://doi.org/10.1038/71323
  46. Kamm, K. E. and J. T. Stull. 2001. Dedicated myosin light chain kinases with diverse cellular functions. J. Biol. Chem. 276:4527-4530 https://doi.org/10.1074/jbc.R000028200
  47. Kim, N. H., S. K. Cho, S. H. Choi, E. Y. Kim, S. P. Park and J. H. Lim. 2000. The distribution and requirements of microtubules and microfilaments in bovine oocytes during in vitro maturation. Zygote 8:25-32 https://doi.org/10.1017/S0967199400000794
  48. Kim, N. H., H. M. Chung, K. Y. Cha and K. S. Chung. 1998. Microtubule and microfilament organization in maturing human oocytes. Hum. Reprod. 13:2217-2222 https://doi.org/10.1093/humrep/13.8.2217
  49. Kline, D. and J. T. Kline. 1992. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev. Biol. 149:80-89 https://doi.org/10.1016/0012-1606(92)90265-I
  50. Kobielak, A., H. A. Pasolli and E. Fuchs. 2004. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat. Cell Biol. 6:21-30 https://doi.org/10.1038/ncb1075
  51. Kovar, D. R., J. R. Kuhn, A. L. Tichy and T. D. Pollard. 2003. The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J. Cell Biol. 161:875-887 https://doi.org/10.1083/jcb.200211078
  52. Kubiak, J., A. Paldi, M. Weber and B. Maro. 1991. Genetically identical parthenogenetic mouse embryos produced by inhibition of the first meiotic cleavage with cytochalasin D. Development 111:763-769
  53. Kumakiri, J., S. Oda, K. Kinoshita and S. Miyazaki. 2003. Involvement of Rho family G protein in the cell signaling for sperm incorporation during fertilization of mouse eggs: inhibition by Clostridium difficile toxin B. Dev. Biol. 260:522-535 https://doi.org/10.1016/S0012-1606(03)00273-2
  54. Labbe, J. C., E. K. McCarthy and B. Goldstein. 2004. The forces that position a mitotic spindle asymmetrically are tethered until after the time of spindle assembly. J. Cell Biol. 167:245-256 https://doi.org/10.1083/jcb.200406008
  55. Leader, B., H. Lim, M. J. Carabatsos, A. Harrington, J. Ecsedy, D. Pellman, R. Maas and P. Leder. 2002. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat. Cell Biol. 4:921-928 https://doi.org/10.1038/ncb880
  56. Lei, Y. and R. Warrior. 2000. The Drosophila Lissencephaly1 (DLis1) gene is required for nuclear migration. Dev. Biol. 226:57-72 https://doi.org/10.1006/dbio.2000.9848
  57. Lessman, C. A. 1987. Germinal vesicle migration and dissolution in Rana pipiens oocytes: effect of steroids and microtubule poisons. Cell Differ. 20:239-251 https://doi.org/10.1016/0045-6039(87)90469-6
  58. Liu, L., J. R. Trimarchi, R. Oldenbourg and D. L. Keefe. 2000. Increased birefringence in the meiotic spindle provides a new marker for the onset of activation in living oocytes. Biol. Reprod. 63:251-258 https://doi.org/10.1095/biolreprod63.1.251
  59. Longo, F. J. and D. Y. Chen. 1985. Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev. Biol. 107:382-394 https://doi.org/10.1016/0012-1606(85)90320-3
  60. Lu, C. and P. E. Mains. 2005. Mutations of a redundant alphatubulin gene affect Caenorhabditis elegans early embryonic cleavage via MEI-1/katanin-dependent and -independent pathways. Genetics 170:115-126 https://doi.org/10.1534/genetics.104.030106
  61. Lutz, D. A., Y. Hamaguchi and S. Inoue. 1988. Micromanipulation studies of the asymmetric positioning of the maturation spindle in Chaetopterus sp. oocytes: I. Anchorage of the spindle to the cortex and migration of a displaced spindle. Cell Motil. Cytoskeleton 11:83-96 https://doi.org/10.1002/cm.970110202
  62. Ma, C., H. A. Benink, D. Cheng, V. Montplaisir, L. Wang, Y. Xi, P. P. Zheng, W. M. Bement and X. J. Liu. 2006. Cdc42 activation couples spindle positioning to first polar body formation in oocyte maturation. Curr. Biol. 16:214-220 https://doi.org/10.1016/j.cub.2005.11.067
  63. Ma, L., R. Rohatgi and M. W. Kirschner. 1998. The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. Proc. Natl. Acad. Sci. USA 95:15362-15367 https://doi.org/10.1073/pnas.95.26.15362
  64. Machesky, L. M. and K. L. Gould. 1999. The Arp2/3 complex: a multifunctional actin organizer. Curr. Opin. Cell Biol. 11:117-121 https://doi.org/10.1016/S0955-0674(99)80014-3
  65. Maro, B., S. K. Howlett and M. Webb. 1985. Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J. Cell Biol. 101:1665-1672 https://doi.org/10.1083/jcb.101.5.1665
  66. Maro, B., M. H. Johnson, S. J. Pickering and G. Flach. 1984. Changes in actin distribution during fertilization of the mouse egg. J. Embryol. Exp. Morphol. 81:211-237
  67. Maro, B., M. H. Johnson, M. Webb and G. Flach. 1986. Mechanism of polar body formation in the mouse oocyte: an interaction between the chromosomes, the cytoskeleton and the plasma membrane. J. Embryol. Exp. Morphol. 92:11-32
  68. Maro, B. and M. H. Verlhac. 2002. Polar body formation: new rules for asymmetric divisions. Nat. Cell Biol. 4:E281-283 https://doi.org/10.1038/ncb1202-e281
  69. Matson, S., S. Markoulaki and T. Ducibella. 2006. Antagonists of myosin light chain kinase and of myosin II inhibit specific events of egg activation in fertilized mouse eggs. Biol. Reprod. 74:169-176 https://doi.org/10.1095/biolreprod.105.046409
  70. McCarter, J., B. Bartlett, T. Dang and T. Schedl. 1999. On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev. Biol. 205:111-128 https://doi.org/10.1006/dbio.1998.9109
  71. McGrail, M. and T. S. Hays. 1997. The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124:2409-2419
  72. Miller, M. A., V. Q. Nguyen, M. H. Lee, M. Kosinski, T. Schedl, R. M. Caprioli and D. Greenstein. 2001. A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science 291:2144-2147 https://doi.org/10.1126/science.1057586
  73. Miller, M. A., P. J. Ruest, M. Kosinski, S. K. Hanks and D. Greenstein. 2003. An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans. Genes Dev. 17:187-200 https://doi.org/10.1101/gad.1028303
  74. Moore, C. A. and M. Zernicka-Goetz. 2005. PAR-1 and the microtubule-associated proteins CLASP2 and dynactin-p50 have specific localisation on mouse meiotic and first mitotic spindles. Reproduction 130:311-320 https://doi.org/10.1530/rep.1.00651
  75. Motta, P. M., S. A. Nottola, S. Makabe and R. Heyn. 2000. Mitochondrial morphology in human fetal and adult female germ cells. Hum. Reprod. 15(Suppl 2):129-147
  76. Mullins, R. D., J. A. Heuser and T. D. Pollard. 1998. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. USA 95:6181-6186 https://doi.org/10.1073/pnas.95.11.6181
  77. Mullins, R. D., W. F. Stafford and T. D. Pollard. 1997. Structure, subunit topology, and actin-binding activity of the Arp2/3 complex from Acanthamoeba. J. Cell Biol. 136:331-343 https://doi.org/10.1083/jcb.136.2.331
  78. Na, J. and M. Zernicka-Goetz. 2006. Asymmetric positioning and organization of the meiotic spindle of mouse oocytes requires CDC42 function. Curr. Biol. 16:1249-1254 https://doi.org/10.1016/j.cub.2006.05.023
  79. Natale, D. R. and A. J. Watson. 2002. Rac-1 and IQGAP are potential regulators of E-cadherin-catenin interactions during murine preimplantation development. Mech. Dev. 119(Suppl 1):S21-26 https://doi.org/10.1016/S0925-4773(03)00086-8
  80. Navara, C. S., N. L. First and G. Schatten. 1994. Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis, and nuclear transfer: the role of the sperm aster. Dev. Biol. 162:29-40 https://doi.org/10.1006/dbio.1994.1064
  81. Navarro, P. A., L. Liu, J. R. Trimarchi, R. A. Ferriani and D. L. Keefe. 2005. Noninvasive imaging of spindle dynamics during mammalian oocyte activation. Fertil. Steril. 83(Suppl 1):1197-1205 https://doi.org/10.1016/j.fertnstert.2004.07.983
  82. Nishimura, Y. and I. Mabuchi. 2003. An IQGAP-like protein is involved in actin assembly together with Cdc42 in the sea urchin egg. Cell Motil. Cytoskeleton 56:207-218 https://doi.org/10.1002/cm.10146
  83. Palazzo, A. F., T. A. Cook, A. S. Alberts and G. G. Gundersen. 2001. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 3:723-729 https://doi.org/10.1038/35087035
  84. Palazzo, R. E., E. Vaisberg, R. W. Cole and C. L. Rieder. 1992. Centriole duplication in lysates of Spisula solidissima oocytes. Science 256:219-221 https://doi.org/10.1126/science.1566068
  85. Pearson, C. G. and K. Bloom. 2004. Dynamic microtubules lead the way for spindle positioning. Nat. Rev. Mol. Cell Biol. 5:481-492 https://doi.org/10.1038/nrm1402
  86. Pellegrin, S. and H. Mellor. 2005. The Rho family GTPase Rif induces filopodia through mDia2. Curr. Biol. 15:129-133 https://doi.org/10.1016/j.cub.2005.01.011
  87. Pellestor, F., T. Anahory and S. Hamamah. 2005. Effect of maternal age on the frequency of cytogenetic abnormalities in human oocytes. Cytogenet. Genome Res. 111:206-212 https://doi.org/10.1159/000086891
  88. Phillips, J. B., R. Lyczak, G. C. Ellis and B. Bowerman. 2004. Roles for two partially redundant alpha-tubulins during mitosis in early Caenorhabditis elegans embryos. Cell Motil. Cytoskeleton 58:112-126 https://doi.org/10.1002/cm.20003
  89. Pollard, T. D., L. Blanchoin and R. D. Mullins. 2000. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29:545-576 https://doi.org/10.1146/annurev.biophys.29.1.545
  90. Pruyne, D., M. Evangelista, C. Yang, E. Bi, S. Zigmond, A. Bretscher and C. Boone. 2002. Role of formins in actin assembly: nucleation and barbed-end association. Science 297:612-615 https://doi.org/10.1126/science.1072309
  91. Reinsch, S. and P. Gonczy. 1998. Mechanisms of nuclear positioning. J. Cell Sci. 111(Pt 16):2283-2295 https://doi.org/10.1104/pp.109.149526
  92. Rizzuto, R., P. Bernardi and T. Pozzan. 2000. Mitochondria as allround players of the calcium game. J. Physiol. 529(Pt 1):37-47 https://doi.org/10.1111/j.1469-7793.2000.00037.x
  93. Sagot, I., S. K. Klee and D. Pellman. 2002. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat. Cell Biol. 4:42-50
  94. Sardet, C., F. Prodon, R. Dumollard, P. Chang and J. Chenevert. 2002. Structure and function of the egg cortex from oogenesis through fertilization. Dev. Biol. 241:1-23 https://doi.org/10.1006/dbio.2001.0474
  95. Sathananthan, A. H. 1997. Ultrastructure of the human egg. Hum. Cell 10:21-38
  96. Sathananthan, A. H. and A. O. Trounson. 2000. Mitochondrial morphology during preimplantational human embryogenesis. Hum. Reprod. 15(Suppl 2):148-159 https://doi.org/10.1093/humrep/15.suppl_2.i[PDF]
  97. Schaerer-Brodbeck, C. and H. Riezman. 2000. Interdependence of filamentous actin and microtubules for asymmetric cell division. Biol. Chem. 381:815-825 https://doi.org/10.1515/BC.2000.104
  98. Schirenbeck, A., T. Bretschneider, R. Arasada, M. Schleicher and J. Faix. 2005. The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat. Cell Biol. 7:619-625 https://doi.org/10.1038/ncb1266
  99. Schuh, M. and J. Ellenberg. 2007. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130:484-498 https://doi.org/10.1016/j.cell.2007.06.025
  100. Schultz, R. M. and G. S. Kopf. 1995. Molecular basis of mammalian egg activation. Curr. Top. Dev. Biol. 30:21-62 https://doi.org/10.1016/S0070-2153(08)60563-3
  101. Severson, A. F., D. L. Baillie and B. Bowerman. 2002. A Formin Homology protein and a profilin are required for cytokinesis and Arp2/3-independent assembly of cortical microfilaments in C. elegans. Curr. Biol. 12:2066-2075 https://doi.org/10.1016/S0960-9822(02)01355-6
  102. Sheeman, B., P. Carvalho, I. Sagot, J. Geiser, D. Kho, M. A. Hoyt and D. Pellman. 2003. Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr. Biol. 13:364-372 https://doi.org/10.1016/S0960-9822(03)00013-7
  103. Simerly, C., G. Nowak, P. de Lanerolle and G. Schatten. 1998. Differential expression and functions of cortical myosin IIA and IIB isotypes during meiotic maturation, fertilization, and mitosis in mouse oocytes and embryos. Mol. Biol. Cell 9:2509-2525
  104. Skop, A. R. and J. G. White. 1998. The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos. Curr. Biol. 8:1110-1116 https://doi.org/10.1016/S0960-9822(98)70465-8
  105. Sokac, A. M. and W. M. Bement. 2000. Regulation and expression of metazoan unconventional myosins. Int. Rev. Cytol. 200:197-304 https://doi.org/10.1016/S0074-7696(00)00005-X
  106. Srayko, M., D. W. Buster, O. A. Bazirgan, F. J. McNally and P. E. Mains. 2000. MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes Dev. 14:1072-1084
  107. Su, Y. Q. and J. J. Eppig. 2002. Evidence that multifunctional calcium/calmodulin-dependent protein kinase II (CaM KII) participates in the meiotic maturation of mouse oocytes. Mol. Reprod. Dev. 61:560-569 https://doi.org/10.1002/mrd.10034
  108. Sun, Q. Y., L. Lai, K. W. Park, B. Kuhholzer, R. S. Prather and H. Schatten. 2001. Dynamic events are differently mediated by microfilaments, microtubules, and mitogen-activated protein kinase during porcine oocyte maturation and fertilization in vitro. Biol. Reprod. 64:879-889 https://doi.org/10.1095/biolreprod64.3.879
  109. Sun, Q. Y. and H. Schatten. 2006. Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction 131:193-205 https://doi.org/10.1530/rep.1.00847
  110. Swan, A., T. Nguyen and B. Suter. 1999. Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nat. Cell Biol. 1:444-449 https://doi.org/10.1038/15680
  111. Swann, K. and J. P. Ozil. 1994. Dynamics of the calcium signal that triggers mammalian egg activation. Int. Rev. Cytol. 152:183-222 https://doi.org/10.1016/S0074-7696(08)62557-7
  112. Terada, Y., T. Fukaya and A. Yajima. 1995. Localization of microfilaments during oocyte maturation of golden hamster. Mol. Reprod. Dev. 41:486-492 https://doi.org/10.1002/mrd.1080410411
  113. Terada, Y., C. Simerly and G. Schatten. 2000. Microfilament stabilization by jasplakinolide arrests oocyte maturation, cortical granule exocytosis, sperm incorporation cone resorption, and cell-cycle progression, but not DNA replication, during fertilization in mice. Mol. Reprod. Dev. 56:89-98 https://doi.org/10.1002/(SICI)1098-2795(200005)56:1<89::AID-MRD11>3.0.CO;2-I
  114. Theurkauf, W. E. and R. S. Hawley. 1992. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesinlike protein. J. Cell Biol. 116:1167-1180 https://doi.org/10.1083/jcb.116.5.1167
  115. Tong, C., H. Y. Fan, D. Y. Chen, X. F. Song, H. Schatten and Q. Y. Sun. 2003. Effects of MEK inhibitor U0126 on meiotic progression in mouse oocytes: microtuble organization, asymmetric division and metaphase II arrest. Cell Res. 13:375-383 https://doi.org/10.1038/sj.cr.7290183
  116. Verlhac, M. H., J. Z. Kubiak, H. J. Clarke and B. Maro. 1994. Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development 120:1017-1025
  117. Verlhac, M. H., C. Lefebvre, P. Guillaud, P. Rassinier and B. Maro. 2000. Asymmetric division in mouse oocytes: with or without Mos. Curr. Biol. 10:1303-1306 https://doi.org/10.1016/S0960-9822(00)00753-3
  118. Vinot, S., T. Le, B. Maro and S. Louvet-Vallee. 2004. Two PAR6 proteins become asymmetrically localized during establishment of polarity in mouse oocytes. Curr. Biol. 14:520- 525 https://doi.org/10.1016/j.cub.2004.02.061
  119. Wang, L., Z. B. Wang, X. Zhang, G. FitzHarris, J. M. Baltz, Q. Y. Sun and X. J. Liu. 2008. Brefeldin A disrupts asymmetric spindle positioning in mouse oocytes. Dev. Biol. 313:155-166 https://doi.org/10.1016/j.ydbio.2007.10.009
  120. Welch, M. D. and R. D. Mullins. 2002. Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 18:247-288 https://doi.org/10.1146/annurev.cellbio.18.040202.112133
  121. Yamashita, Y. M., D. L. Jones and M. T. Fuller. 2003. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301:1547-1550 https://doi.org/10.1126/science.1087795
  122. Yang, H. Y., P. E. Mains and F. J. McNally. 2005. Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter. J. Cell Biol. 169:447-457 https://doi.org/10.1083/jcb.200411132
  123. Yang, H. Y., K. McNally and F. J. McNally. 2003. MEI-1/katanin is required for translocation of the meiosis I spindle to the oocyte cortex in C elegans. Dev. Biol. 260:245-259 https://doi.org/10.1016/S0012-1606(03)00216-1
  124. Yu, L. Z., B. Xiong, W. X. Gao, C. M. Wang, Z. S. Zhong, L. J. Huo, Q. Wang, Y. Hou, K. Liu, X. J. Liu, H. Schatten, D. Y. Chen and Q. Y. Sun. 2007. MEK1/2 regulates microtubule organization, spindle pole tethering and asymmetric division during mouse oocyte meiotic maturation. Cell Cycle 6:330-338 https://doi.org/10.4161/cc.6.3.3805
  125. Zhang, Q. Y., M. Tamura, Y. Uetake, S. Washitani-Nemoto and S. Nemoto. 2004. Regulation of the paternal inheritance of centrosomes in starfish zygotes. Dev. Biol. 266:190-200 https://doi.org/10.1016/j.ydbio.2003.10.027
  126. Zhong, Z. S., L. J. Huo, C. G. Liang, D. Y. Chen and Q. Y. Sun. 2005. Small GTPase RhoA is required for ooplasmic segregation and spindle rotation, but not for spindle organization and chromosome separation during mouse oocyte maturation, fertilization, and early cleavage. Mol. Reprod. Dev. 71:256-261 https://doi.org/10.1002/mrd.20253
  127. Zhu, Z. Y., D. Y. Chen, J. S. Li, L. Lian, L. Lei, Z. M. Han and Q. Y. Sun. 2003. Rotation of meiotic spindle is controlled by microfilaments in mouse oocytes. Biol. Reprod. 68:943-946 https://doi.org/10.1095/biolreprod.102.009910
  128. Zigmond, S. H. 2004. Formin-induced nucleation of actin filaments. Curr. Opin. Cell Biol. 16:99-105 https://doi.org/10.1016/j.ceb.2003.10.019

피인용 문헌

  1. Centrosome dynamics during mammalian oocyte maturation with a focus on meiotic spindle formation vol.78, pp.10-11, 2011, https://doi.org/10.1002/mrd.21380
  2. Four-dimensional visualization and quantitative analysis of meiotic spindle movements in live mouse oocytes vol.247, pp.3, 2012, https://doi.org/10.1111/j.1365-2818.2012.03640.x
  3. Sexual polyploidization in plants - cytological mechanisms and molecular regulation vol.198, pp.3, 2013, https://doi.org/10.1111/nph.12184
  4. Perturbing microtubule integrity blocks AMP-activated protein kinase-induced meiotic resumption in cultured mouse oocytes vol.22, pp.01, 2014, https://doi.org/10.1017/S0967199412000457
  5. Mitochondrial activity and cytoskeleton organization in three pronuclei oocytes after intracytoplasmic sperm injection vol.26, pp.04, 2018, https://doi.org/10.1017/S0967199418000278
  6. Cdc6 is required for meiotic spindle assembly in Xenopus oocytes vol.11, pp.3, 2012, https://doi.org/10.4161/cc.11.3.19033
  7. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility vol.12, pp.None, 2009, https://doi.org/10.1186/1477-7827-12-111