DOI QR코드

DOI QR Code

Effect of Nicotinamide on Proliferation, Differentiation, and Energy Metabolism in Bovine Preadipocytes

  • Liu, Xiaomu (College of Animal Science and Technology, China Agricultural University) ;
  • Fu, Jinlian (College of Animal Science and Technology, China Agricultural University) ;
  • Song, Enliang (Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences) ;
  • Zang, Kun (Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences) ;
  • Wan, Fachun (Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences) ;
  • Wu, Naike (Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences) ;
  • Wang, Aiguo (College of Animal Science and Technology, China Agricultural University)
  • Received : 2009.02.03
  • Accepted : 2009.05.17
  • Published : 2009.09.01

Abstract

This study examined the effects of nicotinamide on proliferation, differentiation, and energy metabolism in a primary culture of bovine adipocytes. After treatment of cells with 100-500 $\mu{M}$ nicotinamide, cell growth was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and cellular lipid content was assessed by Oil Red O staining and a triglyceride (TG) assay. Several factors related to energy metabolism, namely adenosine triphosphatase (ATPase) activity, nitric oxide (NO) content, nitric oxide synthase (NOS) activity, the number of mitochondria and the relative expression of glyceraldehydes-3-phosphate dehydrogenase (GAPDH), peroxisome proliferator-activated receptor-$\gamma$ ($PPAR_{\gamma}$) and inducible NOS (iNOS), were also investigated. Results showed that nicotinamide induced both proliferation and differentiation in bovine preadipocytes. Nicotinamide decreased NO production by inhibiting NOS activity and iNOS mRNA expression, and controlled lipolytic activity by increasing ATPase activity and the number of mitochondria. The present study provides further evidence of the effects of nicotinamide on lipid and energy metabolism, and suggests that nicotinamide may play an important role in the development of bovine adipose tissue in vivo. This emphasizes the importance of investigating bovine adipose tissue to improve our understanding of dairy cow physiology.

Keywords

References

  1. Andrade, J., M. Conde, R. Ramirez, J. Monteseirin, J. Conde, F. Sobrino and F. J. Bedoya. 1996. Protection from nicotinamide inhibition of interleukin-1 beta-induced rin cell nitric oxide formation is associated with induction of mnsod enzyme activity. Endocrinology.137(11):4806-4810 https://doi.org/10.1210/en.137.11.4806
  2. Bai, L., W. J. Pang, Y. J. Yang and G. S. Yang. 2008. Modulation of sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Mol. Cell. Biochem. 307(1-2):129-140 https://doi.org/10.1007/s11010-007-9592-5
  3. Barak, Y., M. C. Nelson, E. S. Ong, Y. Z. Jones, P. Ruiz-Lozano, K. R. Chien, A. Koder and R. M. Evans. 1999. Ppar gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell 4(4):585-595 https://doi.org/10.1016/S1097-2765(00)80209-9
  4. Barroso, I., B. Benito, C. Garci-Jimenez, A. Hernandez, M. J. Obregon and P. Santisteban. 1999. Norepinephrine, triiodothyronine and insulin upregulate glyceraldehyde-3-phosphate dehydrogenase mrna during brown adipocyte differentiation. Eur. J. Endocrinol. 141:169-179 https://doi.org/10.1530/eje.0.1410169
  5. Beloor, J., H. K. Kang, C. Yun, S. H. Kim and Y. S. Moon. 2009. Low lysine treatment increases adipogenic potential of bovine intramuscular preadipocytes. Asian-Aust. J. Anim. Sci. 22(5):721-726
  6. Bossy-Wetzel, E. and S. A. Lipton. 2003. Nitric oxide signaling regulates mitochondrial number and function. Cell Death Differ. 10(7):757-760 https://doi.org/10.1038/sj.cdd.4401244
  7. Campbell, J. M., M. R. Murphy, R. A. Christensen and T. R. Overton. 1994. Kinetics of niacin supplements in lactating dairy cows. J. Dairy Sci. 77:566-575 https://doi.org/10.3168/jds.S0022-0302(94)76985-X
  8. Catalan, V., J. Gomez-Ambrosi, F. Rotellar, C. Silva, A. Rodriguez, J. Salvador, M. J. Gil, J. A. Cienfuegos and G. Fruhbeck. 2007. Validation of endogenous control genes in human adipose tissue: Relevance to obesity and obesity-associated type 2 diabetes mellitus. Horm. Metab. Res. 39(7):495-500 https://doi.org/10.1055/s-2007-982502
  9. Cetkovic-Cvrlje, M., S. Sandler and D. L. Eizirik. 1993. Nicotinamide and dexamethasone inhibit interleukin-1-induced nitric oxide production by rinm5f cells without decreasing messenger ribonucleic acid expression for nitric oxide synthase. Endocrinology.133(4):1739-1743 https://doi.org/10.1210/en.133.4.1739
  10. Collins, P. B. and S. Chaykin. 1972. The management of nicotinamide and nicotinic acid in the mouse. J. Biol. Chem. 247(3):778-783
  11. Engeli, S., J. Janke, K. Gorzelniak, J. Bohnke, N. Ghose, C. Lindschau, F. C. Luft and A. M. Sharma. 2004. Regulation of the nitric oxide system in human adipose tissue. J. Lipid Res. 45(9):1640-1648 https://doi.org/10.1194/jlr.M300322-JLR200
  12. Goff, J. P. and R. L. Horst. 1997. Physiological changes at parturition and their relationship to metabolic disorders. J. Dairy Sci. 80(7):1260-1268 https://doi.org/10.3168/jds.S0022-0302(97)76055-7
  13. Hauner, H. 2005. Secretory factors from human adipose tissue and their functional role. Proc. Nutr. Soc. 64(2):163-169 https://doi.org/10.1079/PNS2005428
  14. Hauschildt, S., P. Scheipers, W. G. Bessler and A. Mulsch. 1992. Induction of nitric oxide synthase in l929 cells by tumournecrosis factor alpha is prevented by inhibitors of poly (adpribose) polymerase. Biochem. J. 288( Pt 1):255-260
  15. Heuer, C., Y. H. Schukken and P. Dobbelaar. 1999. Postpartum body condition score and results from the first test day milk as predictors of disease, fertility, yield, and culling in commercial dairy herds. J. Dairy Sci. 82(2):295-304 https://doi.org/10.3168/jds.S0022-0302(99)75236-7
  16. Hungate, R. E. 1966. The rumen and its microbes. Academic Press, New York
  17. Jaster, E. H., D. F. Bell and T. A. Mcpherron. 1983. Nicotinic acid and serum metabolite concentrations of lactating dairy cows fed supplemental niacin. J. Dairy Sci. 66:1039-1045 https://doi.org/10.3168/jds.S0022-0302(83)81899-2
  18. Jaster, E. H. and N. E. Ward. 1990. Supplemental nicotinic acid or nicotinamide for lactating dairy cows. J Dairy Sci. 73(10):2880-2887 https://doi.org/10.3168/jds.S0022-0302(90)78975-8
  19. Jeong, Y. H., S. M. Lee, H. Kim, H. Y. Park, D. Yoon, S. J. Moon, A. Hosoda, D. Kim, S. Saeki and M. Kang. 2008. Cloning, expression, and regulation of bovine cellular retinoic acidbinding Protein-II (CRABP-II) during adipogenesis. Asian-Aust. J. Anim. Sci. 21(11):1551-1558
  20. Kaanders, J. H., L. A. Pop, H. A. Marres, I. Bruaset, F. J. van den Hoogen, M. A. Merkx and A. J. van der Kogel. 2002. Arcon: Experience in 215 patients with advanced head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 52(3):769-778 https://doi.org/10.1016/S0360-3016(01)02678-5
  21. Komatsu, T., F. Itoh, S. Mikawa and K. Hodate. 2003. Gene expression of resistin in adipose tissue and mammary gland of lactating and non-lactating cows. J. Endocrinol. 178(3):R1-5 https://doi.org/10.1677/joe.0.178R001
  22. Kronfeld, D. S. and F. Raggi. 1964. Nicotinamide coenzyme concentrations in mammary biopsy samples from ketotic cows. Biochem. J. 90(1):219-224
  23. Lehnert, S. A., A. Reverter, K. A. Byrne, Y. Wang, G. S. Nattrass, N. J. Hudson and P. L. Greenwood. 2007. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds. BMC Dev. Biol. 7:95-108 https://doi.org/10.1186/1471-213X-7-95
  24. Lewis, J. E., Y. Shimizu and N. Shimizu. 1982. Nicotinamide inhibits adipocyte differentiation of 3t3-l1 cells. FEBS Lett. 146(1):37-41 https://doi.org/10.1016/0014-5793(82)80700-X
  25. Li, F., Z. Z. Chong and K. Maiese. 2006. Cell life versus cell longevity: The mysteries surrounding the nad+ precursor nicotinamide. Curr. Med. Chem. 13(8):883-895 https://doi.org/10.2174/092986706776361058
  26. Lin, S. J. and L. Guarente. 2003. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr. Opin. Cell Biol. 15(2):241-246 https://doi.org/10.1016/S0955-0674(03)00006-1
  27. Liu, Y. M., J. M. Lacorte, N. Viguerie, C. Poitou, V. Pelloux, B. Guy-Grand, C. Coussieu, D. Langin, A. Basdevant and K. Clement. 2003. Adiponectin gene expression in subcutaneous adipose tissue of obese women in response to shortterm very low calorie diet and refeeding. J. Clin. Endocrinol. Metab. 88:5881-5886 https://doi.org/10.1210/jc.2003-030886
  28. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods.25(4):402-408 https://doi.org/10.1006/meth.2001.1262
  29. Magni, G., A. Amici, M. Emanuelli, G. Orsomando, N. Raffaelli and S. Ruggieri. 2004. Enzymology of nad+ homeostasis in man. Cell. Mol. Life Sci. 61(1):19-34 https://doi.org/10.1007/s00018-003-3161-1
  30. Medina-Gomez, G., S. Gray and A. Vidal-Puig. 2007. Adipogenesis and lipotoxicity: Role of peroxisome proliferator-activated receptor gamma (ppargamma) and ppargammacoactivator-1 (pgc1). Public Health Nutr. 10(10A):1132-1137 https://doi.org/10.1017/S1368980007000614
  31. Morrison, R. F. and S. R. Farmer. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J. Nutr. 130(12):3116S-3121S
  32. Nisoli, E., E. Clementi, C. Paolucci, V. Cozzi, C. Tonello, C. Sciorati, R. Bracale, A. Valerio, M. Francolini, S. Moncada and M. O. Carruba. 2003. Mitochondrial biogenesis in mammals: The role of endogenous nitric oxide. Science.299(5608):896-899 https://doi.org/10.1126/science.1079368
  33. Oikarinen, A., J. Makela, T. Vuorio and E. Vuorio. 1991. Comparison on collagen gene expression in the developing chick embryo tendon and heart. Tissue and development timedependent action of dexamethasone. Biochim. Biophys. Acta. 1089:40-46 https://doi.org/10.1016/0167-4781(91)90082-W
  34. Otonkoski, T., G. M. Beattie, M. I. Mally, C. Ricordi and A. Hayek. 1993. Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J. Clin. Invest. 92(3):1459-1466 https://doi.org/10.1172/JCI116723
  35. Pellat-Deceunynck, C., J. Wietzerbin and J. C. Drapier. 1994. Nicotinamide inhibits nitric oxide synthase mrna induction in activated macrophages. Biochem. J. 297( Pt 1):53-58
  36. Pires, J. A. and R. R. Grummer. 2007. The use of nicotinic acid to induce sustained low plasma nonesterified fatty acids in feedrestricted holstein cows. J. Dairy Sci. 90(8):3725-3732 https://doi.org/10.3168/jds.2006-904
  37. Rolland, V., I. Dugail, X. L. Liepvre and M. Lavau. 1995a. Evidence of increased glyceraldehyde-3-phosphate dehydrogenase and fatty acid synthetase promoteractivities in transiently transfected adipocytes from genetically obese rats. J. Biol. Chem. 270:1102-1106 https://doi.org/10.1074/jbc.270.3.1102
  38. Rolland, V., X. L. Liepvre, M. L. Houbiguian, M. Lavau and I. Dugail. 1995b. C/EBP alpha expression in adipose tissue of genetically obese zucker rats. 207:761-767 https://doi.org/10.1006/bbrc.1995.1252
  39. Choi, K. C., Y. B. Shrestha, S. G. Roh, D. Hishikawa, M. Kuno, H. Tsuzuki, Y. H. Hong and S. Sasaki. 2003. The role of phosphatidylinositol 3-kinase and mitogenic activated protein kinase on the differentiation of ovine preadipocytes. Asian-Aust. J. Anim. Sci. 16(8):1199-1204
  40. Rosen, E. D., P. Sarraf, A. E. Troy, G. Bradwin, K. Moore, D. S. Milstone, B. M. Spiegelman and R. M. Mortensen. 1999. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4(4):611-617 https://doi.org/10.1016/S1097-2765(00)80211-7
  41. Schmittgen, T. D. and K. J. Livak. 2008. Analyzing real-time pcr data by the comparative ct method. Nat. Protoc. 3(6):1101-1108 https://doi.org/10.1038/nprot.2008.73
  42. Sirover, M. 1999. New insights into an old protein: The functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochem. Biophy. Acta. 432:159-184
  43. Stanley, S., K. Wynne, B. McGowan and S. Bloom. 2005. Hormonal regulation of food intake. Physiol. Rev. 85(4):1131-1158 https://doi.org/10.1152/physrev.00015.2004
  44. Talke, H., K. P. Maier, M. Kersten and W. Gerok. 1973. Effect of nicotinamide on carbohydrate metabolism in the rat liver during starvation. Eur. J. Clin. Invest. 3(6):467-474 https://doi.org/10.1111/j.1365-2362.1973.tb02216.x
  45. Ulbrich, S. E., S. Rehfeld, S. Bauersachs, E. Wolf, R. Rottmayer, S. Hiendleder, M. Vermehren, F. Sinowatz, H. H. Meyer and R. Einspanier. 2006. Region-specific expression of nitric oxide synthases in the bovine oviduct during the oestrous cycle and in vitro. J. Endocrinol. 188(2):205-213 https://doi.org/10.1677/joe.1.06526
  46. Vaca, P., G. Berna, F. Martin and B. Soria. 2003. Nicotinamide induces both proliferation and differentiation of embryonic stem cells into insulin-producing cells. Transplant. Proc. 35(5):2021-2023 https://doi.org/10.1016/S0041-1345(03)00735-8
  47. Williams, A. and D. Ramsden. 2005. Nicotinamide: A double edged sword. Parkinsonism Relat. Disord. 11(7):413-420 https://doi.org/10.1016/j.parkreldis.2005.05.011
  48. Yan, H., E. Aziz, G. Shillabeer, A. Wong, D. Shanghavi, A. Kermouni, M. Abdel-Hafez and D. C. Lau. 2002. Nitric oxide promotes differentiation of rat white preadipocytes in culture. J. Lipid Res. 43(12):2123-2129 https://doi.org/10.1194/jlr.M200305-JLR200
  49. Yang, J., L. K. Klaidman, A. Nalbandian, J. Oliver, M. L. Chang, P. H. Chan and J. D. J. Adams. 2002. The effects of nicotinamide on energy metabolism following transient focal cerebral ischemia in wistar rats. Neurosci. Lett. 333(2):91-94 https://doi.org/10.1016/S0304-3940(02)01005-4
  50. Yang, J., S. P. Zhao, J. Li and S. Z. Dong. 2008. Effect of niacin on adipocyte leptin in hypercholesterolemic rabbits. Cardiovasc. Pathol. 17(4):219-225 https://doi.org/10.1016/j.carpath.2007.09.005
  51. Yu, B.-L., Z. Shui-Ping, X. Xiao-Zhu and S. Z. Dong. 2007. Effect of niacin on cholesterol efflux in 3T3-L1 cells. Chinese Journal of Arteriosclerosis.15(4):289-292

Cited by

  1. Effect of mevalonic acid on cholesterol synthesis in bovine intramuscular and subcutaneous adipocytes vol.57, pp.1, 2016, https://doi.org/10.1007/s13353-015-0300-y
  2. Effect of β-carotene supplementation on the expression of lipid metabolism-related genes and the deposition of back fat in beef cattle vol.57, pp.3, 2017, https://doi.org/10.1071/AN15434
  3. Systematic microRNAome profiling reveals the roles of microRNAs in milk protein metabolism and quality: insights on low-quality forage utilization vol.6, pp.None, 2016, https://doi.org/10.1038/srep21194
  4. β-carotene as a dietary factor affecting expression of genes connected with carotenoid, vitamin A and lipid metabolism in the subcutaneous and omental adipose tissue of beef cattle vol.29, pp.1, 2009, https://doi.org/10.22358/jafs/117866/2020
  5. Analysis of Astragalus Polysaccharide Intervention in Heat-Stressed Dairy Cows’ Serum Metabolomics vol.10, pp.4, 2009, https://doi.org/10.3390/ani10040574
  6. Effect of simvastatin on bovine intramuscular and subcutaneous adipocytes proliferation and gene expression in vitro vol.31, pp.5, 2009, https://doi.org/10.1080/10495398.2019.1607749