DOI QR코드

DOI QR Code

Analysis on the substrate specificity and inhibition effect of Brassica oleracea glutathione S-Transferase

양배추 유래의 글루타티온 전달효소의 기질 특이성 및 저해 효과 분석

  • Park, Hee-Joong (Department of Chemistry, College of Natural Sciences, Chung-Ang University) ;
  • Lee, Hee-Jin (Department of Chemistry, College of Natural Sciences, Chung-Ang University) ;
  • Kong, Kwang-Hoon (Department of Chemistry, College of Natural Sciences, Chung-Ang University)
  • 박희중 (중앙대학교 자연과학대학 화학과) ;
  • 이희진 (중앙대학교 자연과학대학 화학과) ;
  • 공광훈 (중앙대학교 자연과학대학 화학과)
  • Received : 2009.03.05
  • Accepted : 2009.06.01
  • Published : 2009.06.25

Abstract

To gain further insight into herbicide detoxification of plant, we purified a glutathione S-transferase from Brassica oleracea (BoGST) and studied its substrate specificity towards several xenobiotic compounds. The BoGST was purified to electrophoretic homogeneity with approximately 10% activity yield by DEAE-Sephacel and GSHSepharose column chromatography. The molecular weight of the BoGST was determined to be approximately 23,000 by SDS-polyacrylamide gel electrophoresis and 48,000 by gel chromatography, indicating a homodimeric structure. The activity of the BoGST was significantly inhibited by S-hexyl-GSH and S-(2,4-dinitrophenyl)GSH. The substrate specificity of the BoGST displayed high activities towards CDNB, a general GST substrate and ethacrynic acid. It also exhibited GSH peroxidase activity toward cumene hydroperoxide.

본 연구에서는 식물의 제초제 해독 기구를 알아보기 위해, 양배추 (Brassica oleracea)로 부터 글루타티온 전달효소를 정제하고 외래성 이물질에 대한 기질 특이성과 저해 효과를 분석하였다. 양배추로부터 DEAE-Sephacel 컬럼과 GSH-Sepharose 컬럼 크로마토그래피를 이용하여 약 10%의 수율로 글루타티온 전달효소를 정제하였다. 정제된 효소에 대해 분자량을 측정한 결과, SDS-polyacrylamide 겔 전기영동으로 측정한 분자량은 23,000Da을 나타내었으며, 겔 크로마토그래피로 측정한 분자량은 48,000Da을 나타내었다. 따라서 정제된 양배추 글루타티온 전달효소는 소단위체의 분자량이 약 23,000Da의 동종이량체라는 사실을 알 수 있었다. 이 효소의 저해제에 대한 효과를 조사한 결과, S-hexyl-GSH와 S-(2,4-dinitrophenyl)GSH에 의해 활성이 저해되었다. 양배추 글루타티온 전달효소의 기질특이성은 CDNB와 ETA에서 높은 활성을 보였으며, cumene hydroperoxide에 대한 GSH peroxidase 활성도 나타내었다.

Keywords

References

  1. B. Mannervik and U. H. Danielson, CRC Crit. Rev. Biochem., 23, 283-337(1988) https://doi.org/10.3109/10409238809088226
  2. R. C. Fahey and A. R. Sundquist, Adv Enzymol. Rel. Areas Mol. Biol., 64, 1-53(1991)
  3. B. Mannervik, Y. C. Awasthi, P. G. Board, J. D. Hayes, C. Ilio, B. Ketterer, I. Listowsky, R. Morgenstern, M. Muramatsu, W. R. Pearson, C. B. Pickett, K. Sato, M. Widersten and C. R. Wolf, Biochem. J., 282, 305-308(1992) https://doi.org/10.1042/bj2820305
  4. G. J. Beckett and J. D. Hayes, Adv. Chim. Chem., 30, 281-380(1993)
  5. R. N. Armstrong, Chem. Res. Toxicol., 10, 2-18(1997) https://doi.org/10.1021/tx960072x
  6. G. L. Lamoureux and D. G. Rusness, J. Agric. Food Chem., 28, 1057-1070(1980) https://doi.org/10.1021/jf60232a080
  7. R. Leurs, D. Donnell, H. Timmerman, A. Bast, J. Pharm. Pharmacol., 41, 388-393(1989) https://doi.org/10.1111/j.2042-7158.1989.tb06483.x
  8. T. J. Mozer, D. C. Tiemeier and E. G. Jaworski, Biochemistry, 22, 1068-1072(1983) https://doi.org/10.1021/bi00274a011
  9. R. E. Moore, M. S. Davies, K. M. O'Connell, E. I. Harding, R. C. Wiegand and D. C. Tiemeier, Nucleic Acids Res., 14, 7227-7235(1986) https://doi.org/10.1093/nar/14.18.7227
  10. G. Grove, R. P. Zarlengo, K. P. Timmerman, N. Q. Li, M. F. Tam and C. P. Tu, Nucleic Acids Res., 16, 425- 438(1988) https://doi.org/10.1093/nar/16.2.425
  11. M. Izuka, Y. Inoue, K. Murata and A. Kimura, J. Bacteriol., 171, 6039-6042(1989) https://doi.org/10.1128/jb.171.11.6039-6042.1989
  12. G. P. Irzyk and E. P. Fuerst, Plant physiol., 102, 803- 810(1993) https://doi.org/10.1104/pp.102.3.803
  13. G. Irzyk, S. Potter, E. Ward and E. P. Fuerst, Plant Physiol., 107, 311-31(1993) https://doi.org/10.1104/pp.107.1.311
  14. D. Sheehan, G. Meade, V. M. Foley and C. A. Dowd, Biochem. J., 360, 1-16(2001) https://doi.org/10.1042/0264-6021:3600001
  15. D. E. Riechers, G. P. Irzyk, S. S. Jones and E. P. Fuerst, Plant physiol., 114, 1461-1470(1997) https://doi.org/10.1104/pp.114.4.1461
  16. F. Droog, A. Spek, A. van der Kooy, A. de Ruyter, H. Hoge, K. Libbenga, P. Hooykaas and B. van der Zaal, Plant Mol. Biol., 29, 413-429(1995) https://doi.org/10.1007/BF00020974
  17. H. Itzhaki and W. R. Woodson, Plant Mol. Biol., 22, 43-58(1993) https://doi.org/10.1007/BF00038994
  18. M. F. Lopez, W. F. Patton, W. B. Sawlivich, H. Erdjument-Bromage, P. Barry, K. Gmyrek, T. Hines, P. Tempst and W. M. Skea, Biochem. Biophys. Acta., 1205, 29-38(1994) https://doi.org/10.1016/0167-4838(94)90088-4
  19. H. Schramm, L. W. Robertson and F. Oesch, Biochem. Pharmacol., 34, 3735-3739(1995) https://doi.org/10.1016/0006-2952(85)90239-4
  20. T. Aoyagi, T. Aoyama, F. Kojima, N. Matsuda, M. Maruyama, M. Hamada and T. Takeuchi, J. Antibiot., 45, 1385-1390(1992) https://doi.org/10.7164/antibiotics.45.1385
  21. W. H. Habig and W. B. Jakoby, Methods Enzymol., 77, 398-405(1981) https://doi.org/10.1016/S0076-6879(81)77053-8
  22. B. Mannervik, Methods Enzymol., 113, 490-495(1985.) https://doi.org/10.1016/S0076-6879(85)13063-6
  23. S. H. Hong, H. J. Park and K. H. Kong, Comp. Biochem Physiol., 122, 21-27(1999) https://doi.org/10.1016/S0305-0491(98)10135-9
  24. U. K. Laemmli, Nature(London), 227, 680-685(1970) https://doi.org/10.1038/227680a0
  25. K. H. Kong, H. Inoue and K. Takahashi, Biochem. Biophys. Res. Commun., 181, 748-755(1991) https://doi.org/10.1016/0006-291X(91)91254-A
  26. M. Nishida, K. H. Kong, H. Inoue and K. Takahashi, J. Biol. Chem., 269, 32536-32541(1994)
  27. J. M. Overbaugh, P. E. Lau, V. A. Marino and R. Fall, Arch. Biochem. Biophys., 261, 227-234(1988) https://doi.org/10.1016/0003-9861(88)90336-0
  28. C. Di Ilio, A. Aceto, N. Allocati, R. Piccolomini, T. Bucciarelli, B. Dragani, A. Faraone, P. Sacchetta, R. Petruzzelli and G. Federici, Arch. Biochem. Biophys., 305, 110-114(1993) https://doi.org/10.1006/abbi.1993.1399
  29. K. Ando, M. Honma, S. Chiba, S. Tahara and J. Mizutani, Agric. Biol. Chem., 52, 135-139(1988.) https://doi.org/10.1271/bbb1961.52.135
  30. C. Y. Lee, L. Johnson, R. H. Cox, J. D. McKinney and S. M. Lee, J. Biol. Chem., 256, 8110-8116(1981)
  31. A. Aceto, B. Dragani, T. Bucciarelli, P. Sacchetta, F. Martini, S. Angelucci, F. Amicarelli, M. Miranda and C. Di Ilio, Biochem. J., 289, 417-422(1993) https://doi.org/10.1042/bj2890417
  32. D. Bartling, R. Radzio, U. Steiner and E. W. Weiler, Eur. J. Biochem., 216, 579-586(1993) https://doi.org/10.1111/j.1432-1033.1993.tb18177.x
  33. K. Hahn and G. Strittmatter, Eur. J. Biochem., 226, 619- 626(1994) https://doi.org/10.1111/j.1432-1033.1994.tb20088.x
  34. K. H. Kong, H. Inoue and K. Takahashi, Biochem. Biophys. Res. Commun., 81, 748-755(1991)
  35. P. Reinemer, L. Prade, P. Hof, T. Neuefeind, R. Huber, R. Zettl, K. Palme, J. Schell, I. Koelln, H. D. Bartunik and B. Bieseler, J. Mol Biol., 255, 289-309(1991) https://doi.org/10.1006/jmbi.1996.0024
  36. D. J. Meyer, B. Coles, S. E. Pemble, K. S. Gilmore, G. M. Fraser and B. Ketterer, Biochem. J., 274, 409-414(1991) https://doi.org/10.1042/bj2740409