Preparation of Poly(ethylene oxide)/Periodic Mesoporous Organosilica Composite

폴리에틸렌옥사이드와 주기적인 중간세공 유리실리카 복합재료 제조

  • Li, Dun (School of Display & Chemical Engineering Yeungnam University) ;
  • Sur, G. S. (School of Display & Chemical Engineering Yeungnam University)
  • 이돈 (영남대학교 디스플레이화공학부) ;
  • 서길수 (영남대학교 디스플레이화공학부)
  • Received : 2009.06.18
  • Accepted : 2009.07.29
  • Published : 2009.10.10

Abstract

Periodic mesoporous organosilicas (PMO) were synthesized using bis(triethoxy silyl) benzene as the precursor and dodecyl trimethyl ammonium bromide (DTMA) as the templating agent. From these results of XRD, TEM, and NMR, the pore structure of the material was confirmed to have a well-organized hexagonal structure. Poly(ethylene oxide) (PEO) was penetrated into PMO. From the DSC and XRD experiments, the polymer melting transition of crystalline polyethylene oxide (PEO) decreased then finally disappeared. These results prove that the polymer chains penetrate into the PMO channels, and penetrated polymer chains are constrained inside channels of PMO.

전구체로서 bis(triethoxy silyl) benzene (BTEB), 구조유도체로서 dodecyl trimethyl ammonium bromide (DTMA)를 사용하여 periodic mesoporous organosilicas (PMO) 합성하였다. PMO를 XRD, TEM, 그리고 NMR로 확인한 결과 육각 벌집형태의 메조포러스한 물질임을 확인하였다. 합성한 PMO에 polyethylene oxide (PEO)를 삽입하여, DSC와 XRD로 확인한 결과 고분자가 PMO에 삽입되는 과정에서 고분자의 결정성 용융 온도가 감소하다가 결국 사라짐을 확인하였다. 이러한 결과는 고분자 사슬이 PMO의 기공에 삽입되었다는 것이며, 삽입된 고분자 사슬은 PMO의 골격구조에 의하여 제한 받아서 비결정성 형태의 구조를 지니고 있음을 보여주고 있다.

Keywords

References

  1. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, J. Am. Chem. Soc., 114, 10834 (1992) https://doi.org/10.1021/ja00053a020
  2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 359, 710 (1992) https://doi.org/10.1038/359710a0
  3. S. Hitz and R. Prin S., J. Catal., 168, 194 (1997) https://doi.org/10.1006/jcat.1997.1659
  4. W. Hammond, E. Prouzet, SD. Mahanti, and T. J. Pinnavaia, Microporous & Mesoporous., 27, N. 1, 19 (1999) https://doi.org/10.1016/S1387-1811(98)00222-4
  5. X. S. Zhao, G. Q. Lu, and G. J. Miller, Ind. Eng. Chem. Res., 35, 2075 (1996) https://doi.org/10.1021/ie950702a
  6. B. Chakraborty, A. C. Pulikottil, and B. Viswanathan, Catal. Lett., 39, 63 (1996) https://doi.org/10.1007/BF00813731
  7. C. Yoshina-Ishii, T. Asefa, N. Coombs, M. J. Maclachlan, and G. A. Ozin, Chem. Commun., 2539 (1999)
  8. T. Asefa, M. J. Maclachlan, H. Grondey, N. Coombs, and G. A. Ozin, Angew. Chem. Int. Ed., 39, 10, 1808 (2000) https://doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1808::AID-ANIE1808>3.0.CO;2-G
  9. D. A. Loy and K. J. Shea., Chem. Rev., 95, 1431(1995) https://doi.org/10.1021/cr00037a013
  10. D. J. Kim, S. G. Lyu, K. S. Bae, T. J. Lee, and G. S. Sur, J. Korean, Ind. Eng. Chem., 14, 1076 (2003)
  11. C. O. Oriakhi, R. L. Nafshun, and M. M. Lerner, Materials Research Bulletin, 31, 1513 (1996) https://doi.org/10.1016/S0025-5408(96)00142-0
  12. J. Bujdak, E. Hackett, and E. P. Giannelis, Chem. Mater., 12, 2168 (2000) https://doi.org/10.1021/cm990677p
  13. H. K. Choi, Y. H. Park, S. G. Lyu, B. S. Kim, and G. S. Sur, Polymer (Korea), 23, 456 (1999)
  14. G. S. Sur, H. L. Sun, T. J. Lee, S. G. Lyu, and J. E. Mark, Colloid and Polymer Science, 281, 1040 (2003) https://doi.org/10.1007/s00396-003-0954-6
  15. K. J. Shea, D. A. Loy, and O. Webster, J. Am. Chem. Soc., 114, 6700 (1992) https://doi.org/10.1021/ja00043a014
  16. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, J. Am. Chem. Soc., 114, 10834 (1992) https://doi.org/10.1021/ja00053a020