DOI QR코드

DOI QR Code

Fabrication of Fe-ACF/TiO2 composites and their photonic activity for organic dye

ACF/TiO2 복합체의 제조 및 유기 염료에 의한 광활성

  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Meng, Ze-Da (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Ko, Weon-Bae (Department of Chemistry, Sahmyook University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • 장간 (한서대학교, 신소재공학과) ;
  • 맹칙달 (한서대학교, 신소재공학과) ;
  • 고원배 (삼육대학교, 화학과) ;
  • 오원춘 (한서대학교, 신소재공학과)
  • Received : 2009.04.06
  • Accepted : 2009.05.02
  • Published : 2009.06.25

Abstract

Activated carbon fiber treated with iron compound (Fe-ACF) was employed for preparation of Feactivated carbon fiber/$TiO_2$ (Fe-ACF/$TiO_2$) composite catalysts. Then, the prepared Fe-ACF/$TiO_2$ composite catalysts were characterized by employing BET, SEM, XRD and EDX instruments. It showed that BET surface area was related to adsorption capacity for each composite. The SEM results showed that ferric compound and titanium dioxide were distributed on the surfaces of ACF. The XRD results showed that Fe-ACF/$TiO_2$ composite mostly contained an anatase structure with a Fe mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in Fe-ACF/$TiO_2$ composites. From photocataytic degradation effect, it was observed in the organic dye (Methylene blue, MB) degradation by these composites. Different degradation effect can be attributed to the synergetic effects of photo-Fenton reaction of Fe. It was considered that the combined reactions of Fe-ACF/$TiO_2$ produce powerful photo-Fenton process in the MB degradation.

철 화합물을 처리한 활성탄소섬유(Fe-ACF)를 사용하여 Fe-활성탄소섬유/$TiO_2$ (Fe-ACF/$TiO_2$) 복합체 촉매를 제조하였다. 또한, Fe-ACF/$TiO_2$ 복합체 촉매는 BET, SEM, XRD 와 EDX 기기를 사용하여 특성화하였다. BET 표면적은 각각의 복합체들에 대한 흡착 특성과 관계 있음을 나타내었다. SEM 결과는 ACF의 표면상에 Fe 화합물과 이산화 티탄이 분포해 있음을 나타내었다. XRD 결과는 Fe-ACF/$TiO_2$ 복합체가 철 중간체 화합물과 함께 아나타제 구조를 가지고 있음을 나타내었다. EDX 결과는 Fe-ACF/$TiO_2$ 복합체내에 C, O, Ti와 Fe 피크의 존재를 보였다. 광촉매 분해 효과로부터, 이들 복합체에 의한 유기염료의 분해를 관찰 하였다. 다른 분해 효과는 Fe의 포토-펜톤 반응의 탓으로 여겨진다. 즉 Fe-ACF/$TiO_2$의 복합적인 반응은 MB 분해에 대한 강력한 포토-펜톤 반응을 생성한 것으로 여겨진다.

Keywords

References

  1. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chem. Rev., 95, 69-96(1995) https://doi.org/10.1021/cr00033a004
  2. A. L. Linsebigler, G. Q. Lu and J. T. Yates Jr, Chem. Rev., 95, 735-758(1995) https://doi.org/10.1021/cr00035a013
  3. N. Negishi, T. Iyoda, K. Hashimoto and A. Fujishima, Chem. Lett., 24, 841-843(1995) https://doi.org/10.1246/cl.1995.841
  4. I. Sopyan, M. Watanabe and S. Murasawa, Chem. Lett., 1, 69-71(1996)
  5. T. Torimoto, S. Ito, S. Kuwabata and H. Yoneyama, Environ. Sci. Technol., 30, 1275-1281(1996) https://doi.org/10.1021/es950483k
  6. M. L. Chen, C. S Lim and W. C. Oh, Carbon Letter, 8, 177-183(2007) https://doi.org/10.5714/CL.2007.8.3.177
  7. W. C. Oh, M. L. Chen and J. Ceram. Process. Res., 9, 100-106(2008)
  8. S. X. Liu, X. Y. Chen and X. Chen, J. Hazard Mater., 143, 257-263(2007) https://doi.org/10.1016/j.jhazmat.2006.09.026
  9. W. C. Oh, M. L. Chen and C. S. Lim, J. Ceram. Proceed. Res., 8, 119-125(2007)
  10. W. C. Oh, M. L. Chen and Y. S. Ko, Carbon Science, 8, 6-11(2007) https://doi.org/10.5714/CL.2007.8.1.006
  11. W. C. Oh, J. S. Bae, M. L. Chen and Y. S. Ko, Analytical. Science. Technology., 19, 376-382(2006)
  12. W. C. Oh, J. S. Bae and M. L. Chen, Bull. Korean Chem. Soc., 27, 1423-1428(2006) https://doi.org/10.5012/bkcs.2006.27.9.1423
  13. J. Matos, J. Laine and J. M. Herrman, J. Catal., 200, 10-20(2001) https://doi.org/10.1006/jcat.2001.3191
  14. B. Tryba, A. W. Morawski and M. Inagaki, Appl. Catal. B: Environ., 41, 427-435(2003) https://doi.org/10.1016/S0926-3373(02)00173-X
  15. C. H. Ao and S. C. Lee, Appl. Catal. B: Environ., 44, 191-205(2003) https://doi.org/10.1016/S0926-3373(03)00054-7
  16. Y. C. Chiang and C. P. Huang, Carbon, 39, 523-534 (2001) https://doi.org/10.1016/S0008-6223(00)00161-5
  17. M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumuraand and M. Toyoda, Carbon, 41, 2619-2624(2003) https://doi.org/10.1016/S0008-6223(03)00340-3
  18. G. M. Colon, C. Hidalgo and M. Macias, Appl. Catal. A: Gen., 259, 235-243(2004) https://doi.org/10.1016/j.apcata.2003.09.036
  19. M. C. Lu and J. N. Chen, Chemosphere, 38, 617- 627(1999) https://doi.org/10.1016/S0045-6535(98)00204-5
  20. J. Arana and J. M. Dona, Appl. Catal. B: Environ., 44, 161-168(2003) https://doi.org/10.1016/S0926-3373(03)00107-3
  21. J. Arana, O. Gonzalez Diaz, M. Miranda Saracho, J. M. Dona Rodriguez, J. A. Herrera Melian and J. erez Pena, Appl. Catal. B Environ., 32, 49-61(2001) https://doi.org/10.1016/S0926-3373(00)00289-7
  22. W. C. Oh, F. J. Zhang, M. L. Chen, Y. M. Lee and W. B. Ko, J. Indust. Engin. Chem., doi:10.1016/j.jiec.2008.09.019
  23. F. Lin, D. M. Jiang and X. M. Ma, J. Alloy. Compo., 470, 375-378(2009) https://doi.org/10.1016/j.jallcom.2008.02.067
  24. X. Y. Pang, D. M. He, S. L. Luo and Q. Y. Cai, Sensor. Actuator. B, 137, 134-138(2009) https://doi.org/10.1016/j.snb.2008.09.051
  25. T. Hakoda, K. Matsumoto, A. Mizuno and K. Hirota, Appl. Catal A: General., 357, 244-249(2009) https://doi.org/10.1016/j.apcata.2009.01.030
  26. Z. B. Wu, Z. Y. Sheng, Y. Liu, H. Q. Wang, N. Tang and J. Wang, J. Hazard. Mater., 164, 542-554(2009) https://doi.org/10.1016/j.jhazmat.2008.08.028
  27. V. H. Kov$\acute{a}$, V. S tengl, S. Bakardjieva, N. Murafa and V. Tyrpekl, Appl. Catal. B: Environ., doi:10.1016/j.apcatb.2009.01.023
  28. M. Pera-Titus, V. Garc$\acute{i}$a-Molina, M. A. Ba$\tilde{n}$os, J. Gim$\acute{e}$nez and S. Esplugas, Appl Catal B: Environ, 47, 219-256(2004) https://doi.org/10.1016/j.apcatb.2003.09.010
  29. M. Neamtu, A. Yediler, I. Siminiceanu and A. Kettrup, J. Photochem. Photobio. A: Chem., 161, 87-93(2003) https://doi.org/10.1016/S1010-6030(03)00270-3
  30. M. I. Franch, J. A. Ayllon, J. Peral and X. Domenech, Appl. Catal. B: Environ., 50, 89-99(2004) https://doi.org/10.1016/j.apcatb.2003.12.024
  31. H. Fallmann, T. Krutzler, R. Bauer, S. Malato and J. Blanco, Catal. Today, 54, 309-319(1999) https://doi.org/10.1016/S0920-5861(99)00192-3
  32. R. Bauer, G. Waldner, H. Fallmann, S. Hager, M. Klare, T. Krutzler, S. Malato and P. Maletzky, Cataly. Today., 53, 131-144(1999) https://doi.org/10.1016/S0920-5861(99)00108-X
  33. B. Pal, M. Sharon and G. Nogami, Materials Chemistry and Physics, 59, 254-261(1999) https://doi.org/10.1016/S0254-0584(99)00071-1
  34. Z. M. Wang, G. Yang, P. Biswas, W. Bresser and P. Boolchand, Powder Technol., 114, 197–204(2001) https://doi.org/10.1016/S0032-5910(00)00321-1
  35. F. J. Zhang, M. L. Chen and W. C. Oh, Kor. J. Mater. Res., doi: 10.3740/MRSK.2008.18.9.000
  36. W. D. Wang, P. Serp, P. Kalck and J. L. Faria, J. Mole. Catal. A: Chem., 235, 194-199(2005) https://doi.org/10.1016/j.molcata.2005.02.027
  37. W. C. Oh and M. L. Chen, J. Ceram. Proc. Res., 8, 316- 323(2007)
  38. W. C. Oh, S. B. Han and J. S. Bae, Analytical. Science. Technology., 20, 279-288(2007)
  39. S. Chaianansutcharit, O. Mekasuwandumrong and P. Praserthdam, Ceramics International, 33, 697-699(2007) https://doi.org/10.1016/j.ceramint.2005.12.013
  40. K. Hayashi, W. Sakamoto and T. Yogo, Journal of Magnetism and Magnetic Materials, 321, 450-457 (2009) https://doi.org/10.1016/j.jmmm.2008.10.004
  41. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J. M. Herrmann, Applied Catalysis B: Environmental., 31, 145-157(2001) https://doi.org/10.1016/S0926-3373(00)00276-9
  42. W. C. Hung, Y. C. Chen, H. Chu and T. K. Tseng, Appl Surf. Sci., 255, 2205-2213(2008) https://doi.org/10.1016/j.apsusc.2008.07.079
  43. M. Coronado, K. L. Yeung, J. Soria, J. M. Coronado, C. Belver, C. Y. Lee and V. Augugliaro, Appl. Catal. B: Environ., 29 327-336(2001) https://doi.org/10.1016/S0926-3373(00)00211-3