DOI QR코드

DOI QR Code

Altered Gene Expression in Cerulein-Stimulated Pancreatic Acinar Cells: Pathologic Mechanism of Acute Pancreatitis

  • Yu, Ji-Hoon (Department of Pharmacology, Yonsei University College of Medicine) ;
  • Lim, Joo-Weon (Department of Food and Nutrition, Research Institute of Food & Nutritional Sciences, Brain Korea 21 Project, Yonsei University College of Human Ecology) ;
  • Kim, Hye-Young (Department of Food and Nutrition, Research Institute of Food & Nutritional Sciences, Brain Korea 21 Project, Yonsei University College of Human Ecology)
  • Published : 2009.12.31

Abstract

Acute pancreatitis is a multifactorial disease associated with the premature activation of digestive enzymes. The genes expressed in pancreatic acinar cells determine the severity of the disease. The present study determined the differentially expressed genes in pancreatic acinar cells treated with cerulein as an in vitro model of acute pancreatitis. Pancreatic acinar AR42J cells were stimulated with $10^{-8}$ M cerulein for 4 h, and genes with altered expression were identified using a cDNA microarray for 4,000 rat genes and validated by real-time PCR. These genes showed a 2.5-fold or higher increase with cerulein: lithostatin, guanylate cyclase, myosin light chain kinase 2, cathepsin C, progestin-induced protein, and pancreatic trypsin 2. Stathin 1 and ribosomal protein S13 showed a 2.5-fold or higher decreases in expression. Real-time PCR analysis showed time-dependent alterations of these genes. Using commercially available antibodies specific for guanylate cyclase, myosin light chain kinase 2, and cathepsin C, a time-dependent increase in these proteins were observed by Western blotting. Thus, disturbances in proliferation, differentiation, cytoskeleton arrangement, enzyme activity, and secretion may be underlying mechanisms of acute pancreatitis.

Keywords

References

  1. Barone S, Okaya T, Rudich S, Petrovic S, Tenrani K, Wang Z, Zahedi K, Casero RA, Lentsch AB, Soleimani M. Distinct and sequential upregulation of genes regulating cell growth and cell cycle progression during hepatic ischemia-reperfusion injury. Am J Physiol Cell Physiol 289: C826−C835, 2005 https://doi.org/10.1152/ajpcell.00629.2004
  2. Belmont LD, Mitchison TJ. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84: 623−631, 1996 https://doi.org/10.1016/S0092-8674(00)81037-5
  3. Bieche I, Maucuer A, Laurendeau I, Lachkar S, Spano AJ, Frankfurter A, Levy P, Manceau V, Sobel A, Vidaud M, Curmi PA. Expression of stathmin family genes in human tissues: non-neural-restricted expression for SCLIP. Genomics 81: 400−410, 2003 https://doi.org/10.1016/S0888-7543(03)00031-4
  4. Bissonnette M, Kuhn D, de Lanerolle P. Purification and characterization of myosin light-chain kinase from the rat pancreas. Biochem J 258: 739-747, 1989
  5. Bulun SE, Cheng YH, Yin P, Imir G, Utsunomiya H, Attar E, Innes J, Julie Kim J. Progesterone resistance in endometriosis: Link to failure to metabolize estradiol. Mol Cell Endocrinol 248: 94-103, 2006 https://doi.org/10.1016/j.mce.2005.11.041
  6. Carnevale RP, Proietti CJ, Salatino M, Urtreger A, Peluffo G, Edwards DP, Boonyaratanakornkit V, Charreau EH, Bal de Kier Joffe E, Schillaci R, Elizalde PV. Progestin effects on breast cancer cell proliferation, proteases activation, and in vivo development of metastatic phenotype all depend on progesterone receptor capacity to activate cytoplasmic signaling pathways. Mol Endocrinol 21: 1335-1358, 2007 https://doi.org/10.1210/me.2006-0304
  7. Chen N, Zou J, Wang S, Ye Y, Huang Y, Gadda G, Yang JJ. Designing protease sensors for real-time imaging of trypsin activation in pancreatic acinar cells. Biochemistry 48: 3519-3526, 2009 https://doi.org/10.1021/bi802289v
  8. Chinkers M. Targeting of a distinctive protein-serine phosphatase to the protein kinase-like domain of the atrial natriuretic peptide receptor. Proc Natl Acad Sci USA 91: 11075−11079, 1994 https://doi.org/10.1073/pnas.91.23.11075
  9. Choi JY, Kim KH. Effects of small molecular antioxidants on cerulein-induced acute pancreatitis in rat. Korean J Physiol Pharmacol 2: 629−635, 1998
  10. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 62: 156-159, 1987
  11. Cukras AR, Green R. Multiple effects of S13 in modulating the strength of intersubunit interactions in the ribosome during translation. J Mol Biol 349: 47-59, 2005 https://doi.org/10.1016/j.jmb.2005.03.075
  12. Drewett JG, Garbers DL. The family of guanylyl cyclase receptors and their ligands. Endocr Rev 15: 135-162, 1994
  13. Freshney RI. Culture of Animal Cells; A Manual for Basic Technique. 3th ed. John Wiley and Sons Inc, New York, p 71-103, 1994
  14. Giancotti FG, Mainiero F. Integrin-mediated adhesion and signaling in tumorigenesis. Biochim Biopys Acta 1198: 47-64, 1994
  15. Gorelick FS, Otani T. Mechanisms of intracellular zymogen activation. Baillieres Best Pract Res Clin Gastroenterol 13: 227-240, 1999 https://doi.org/10.1053/bega.1999.0021
  16. Grady T, Dabroski A, Williams JA, Logsdon CD. Stress-activated protein kinase activation is the earliest direct correlate to the induction of secretagogue-induced pancreatitis in rats. Biochem Biophys Res Commun 227: 1-7, 1996 https://doi.org/10.1006/bbrc.1996.1458
  17. Graf R, Schiesser M, Scheele G.A, Marquardt K, Frick TW, Mumann RW, Bimmler D. A family of 16-kDa pancreatic secretory stress proteins form highly organized fibrillar structures upon tryptic activation. J Biol Chem 276: 21028-21038, 2001 https://doi.org/10.1074/jbc.M010717200
  18. Hartupee JC, Zhang H, Bonaldo MF, Soares MB, Dieckgraefe BK. Isolation and characterization of a cDNA encoding a novel member of the human regenerating protein family: Reg IV. Biochim Biophys Acta 1518: 287-293, 2001 https://doi.org/10.1016/S0167-4781(00)00284-0
  19. Iancu C, Mistry SJ, Arkin S, Wallenstein S, Atweh GF. Effects of stathmin inhibition on the mitotic spindle. J Cell Sci 114: 909-916, 2001
  20. Jensen RT, Wank SA, Rowley WH, Sato S, Gardner JD. Interaction of CCK with pancreatic acinar cells. Trends Pharmacol Sci 10: 418-423, 1989 https://doi.org/10.1016/0165-6147(89)90192-2
  21. Ji B, Chen X-Q, Misek DE, Kuick R, Hanash S, Ernst S, Najarian R, Logsdin CD. Pancreatic gene expression during the initiation of acute pancreatitis: identification of EGR-1 as a key regulator. Physiol Genomics 14: 59-72, 2003 https://doi.org/10.1016/S0888-7543(05)80283-6
  22. Ju KD, Yu JH, Kim H, Kim KH. Role of mitogen-activated protein kinases, NF-$\kappa$B, and AP-1 on cerulein-induced IL-8 expression in pancreatic acinar cells. Ann N Y Acad Sci 1090: 368-374, 2006 https://doi.org/10.1196/annals.1378.040
  23. Kassell B, Kay J. Zymogens of proteolytic enzymes. Science 180: 1022-1027, 1973 https://doi.org/10.1126/science.180.4090.1022
  24. Kim H, Kim KH. Secretory response of cultured acinar cells of rat pancreas to cholecystokinin. Yonsei Medical J 37: 405-411, 1996
  25. Kim JY, Kim KH, Lee JA, Namkung W, Sun AQ, Anathanarayanan M, Suchy FJ, Shin DM, Muallem S, Lee MG. Transporter- mediated bile acid uptake causes $Ca^{2+}$-dependent cell death in rat pancreatic acinar cells. Gastroenterology 122: 1941-1953, 2002 https://doi.org/10.1053/gast.2002.33617
  26. Kim H, Seo JY, Cho SH, Kim KH. Lipid peroxidation, NF-$\kappa$B activation and cytokine production in neutrophil-stimulated pancreatic acinar cells. Kor J Physiol Pharmacol 3: 521-528, 1999
  27. Koivunen E, Saksela O, Itkonen O, Osman S, Huhtala ML, Stenman UH. Human colon carcinoma, fibrosarcoma and leukemia cell lines produce tumor-associated trypsinogen. Int J Cancer 47: 592-596, 1991 https://doi.org/10.1002/ijc.2910470419
  28. Koppel J, Loyer P, Maucuer A, Rehak P, Manceau V, Guguen- Guillouzo C, Sobel A. Induction of stathmin expression during liver regeneration. FEBS Lett 331: 65-70, 1993 https://doi.org/10.1016/0014-5793(93)80298-9
  29. Kurita T, Beitel LK, Cooke PS, Lydon G.R, Cunha JP. Paracrine regulation of epithelial progesterone receptor and lactoferrin by progesterone in the mouse uterus. Biol Reprod 62: 831-838, 2000 https://doi.org/10.1095/biolreprod62.4.831
  30. Larsson N, Melander H, Marklund U, Osterman O, Gullberg M. G2/M transition requires multisite phosphorylation of oncoprotein 18 by two distinct protein kinase systems. J Biol Chem 270: 14175-14183, 1995 https://doi.org/10.1074/jbc.270.23.14175
  31. Lee JW, Kim KH, Kim H. Role of vascular endothelial growth factor-D (VEGF-D) on IL-6 expression in cerulein- stimulated pancreatic acinar cells. Ann NY Acad Sci 1095: 129-133, 2007 https://doi.org/10.1196/annals.1397.016
  32. Lee JW, Seo J, Kim H, Chung JB, Kim KH. Signal transduction of cerulein-induced cytokine expression and apoptosis in pancreatic acinar cells. Ann NY Acad Sci 1010: 104-108, 2003 https://doi.org/10.1196/annals.1299.017
  33. Lerch MM, Adler G. Experimental animal models of acute pancreatitis. Int J Pancreatol 15: 159-170, 1994
  34. Lowe DG. Human natriuretic peptide receptor-A guanylyl cyclase is self-associated prior to hormone binding. Biochemistry 31: 10421-10425, 1992 https://doi.org/10.1021/bi00158a001
  35. Melhem RF, Strahler JR, Hailat N, Zhu XX, Hanash SM. Involvement of OP18 in cell proliferation. Biochem Biophys Res Commun 179: 1649-1655, 1991 https://doi.org/10.1016/0006-291X(91)91764-4
  36. Multigner L, De Caro A, Lombardo D, Campese D, Saries H. Pancreatic stone protein, a phosphoprotein which inhibits calcium carbonate precipitation from human pancreatic juice. Biochem Biophys Res Commun 110: 69-74, 1983 https://doi.org/10.1016/0006-291X(83)91261-5
  37. Namkung W, Han W, Luo X, Muallem S, Cho KH, Kim KH, Lee MG. Protease-activated receptor 2 exerts local protection and mediates some systemic complications in acute pancreatitis. Gastroenterology 126: 1844-1859, 2004 https://doi.org/10.1053/j.gastro.2004.03.019
  38. Nieuwenhuizen AG, Schuiling GA, Liem SM, Moes H, Koiter TR, Uilenbroek JT. Progesterone stimulates pancreatic cell proliferation in vivo. Eur J Endocrinol 140: 256-263 https://doi.org/10.1530/eje.0.1400256
  39. Noller HF, Hoang L, Fredrick K. The 30S ribosomal P site: a function of 16S rRNA. FEBS Lett 579: 855-858, 2005 https://doi.org/10.1016/j.febslet.2004.11.026
  40. Patard L, Lallemand JY, Stoven V. An insight into the role of human pancreatic lithostathine. JOP 4: 92-103, 2003
  41. Piotrowski Z, Mysliwiec P, Gryko M, Ostrowska H, Baltaziak M. Chymotrypsin-like activity in rat tissues in experimental acute pancreatitis. Rocz Akad Med Bialymst 48: 61-65, 2003
  42. Poole AJ, Li Y, Kim Y, Lin SC, Lee WH, Lee EY. Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314: 1467-1470, 2006 https://doi.org/10.1126/science.1130471
  43. Potter LR, Garbers DL. Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J Biol Chem 267: 14531-14534, 1992
  44. Rider V, Isuzugawa K, Twarog M, Jones S, Cameron B, Imakawa K, Fang J. Progesterone initiates Wnt-beta-catenin signaling but estradiol is required for nuclear activation and synchronous proliferation of rat uterine stromal cells. J Endocrinol 191: 537-548, 2006 https://doi.org/10.1677/joe.1.07030
  45. Rojas-Espinosa O, Arce-Paredez P, Dannenberg AM, Kamaenetz RL. Macrophage esterase: identification, purification and properties of a chymotrypsin-like esterase from lung that hydrolyses and transfers nonpolar amino acid esters. Biochim Biophys Acta 22: 161-179, 1975
  46. Rubin CI, Atweh GF. The role of stathmin in the regulation of the cell cycle. J Cell Biochem 93: 242-250, 2004 https://doi.org/10.1002/jcb.20187
  47. Rubin CI, French DL, Atweh GF. Stathmin expression and megakaryocyte differentiation: a potential role in polyploidy. Exp Hematol 31: 389-397, 2003 https://doi.org/10.1016/S0301-472X(03)00043-2
  48. Sato S, Stark HA, Martinez J, Beaven M A, Jensen R T, Gardner JD. Receptor occupation, calcium mobilization, and amylase release in pancreatic acini: effect of CCK-JMV-180. Am J Physiol 257 (Gastrointest Liver Physiol 20): G202-G209, 1989
  49. Schoenberg MH, Bruchler M, Gaspar M, Stinner A, Younes M, Melzner I, Bultmann B, Beger HG. Oxygen free radicals in acute pancreatitis of the rat. Gut 31: 1138-1143, 1990 https://doi.org/10.1136/gut.31.10.1138
  50. Seidler NW, Jona I, Vegh M, Martonos A. Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasmic reticulum. J Biol Chem 264: 17816-17823, 1989
  51. Steer ML. Early events in acute pancreatitis. Baillieres Best Pract Res Clin Gastroenterol 13: 213-225, 1999 https://doi.org/10.1053/bega.1999.0020
  52. Sternfeld L, Krause E, Guse AH, Schulz I. Hormonal control of ADP-ribosyl cyclase activity in pancreatic acinar cells from rats. J Biol Chem 278: 33629-33636, 2003 https://doi.org/10.1074/jbc.M301043200
  53. Terazono K, Yamamoto H, Takasawa S, Shiga S, Yonemura Y, Tochino Y. A novel gene activated in regenerating islets. J Biol Chem 263: 2111-2114, 1988
  54. Violette S, Festor E, Pandreu-Vasile I, Mitchell V, Adida C, Lesuffleur T. Reg IV, a new member of the regenerating gene family, is overexpressed in colorectal carcinomas. Int J Cancer 103: 185-193, 2003 https://doi.org/10.1002/ijc.10788
  55. Virlos I, Mazzon E, Serraino I, Genovese T, Di Paola R, Thiemerman C, Siriwardena A, Cuzzocrea S. Calpain I inhibitor ameliorates the indices of disease severity in a murine model of cerulein-induced acute pancreatitis. Intensive Care Med 30: 1645-1651, 2004
  56. Walz DA, Fenton JW. The role of thrombin in tumor cell metastasis. Invasion Metastasis 14: 303-308, 1994
  57. Watanabe T, Yonekura H, Terazono K, Yamamoto H, Okamoto H. Complete nucleotide sequence of human reg gene and its expression in normal and tumoral tissues. The reg protein, pancreatic stone protein, and pancreatic thread protein are one and the same product of the gene. J Biol Chem 265: 7432-7439, 1990
  58. Wedel BJ, Garbers DL. New insights on the functions of the guanylyl cyclase receptors. FEBS Lett 410: 29-33, 1997 https://doi.org/10.1016/S0014-5793(97)00358-X
  59. Willemer S, Elsasser HP, Adler G: Hormone-induced pancreatitis. Eur Surg Res 24: 29-49, 1992 https://doi.org/10.1159/000129237
  60. Yang F, Liu WP, He MX, Tang QL, Zhao S, Zhang WY, Xia QJ, Li GD. Real-time fluorescence quantitative PCR in detecting ribosome protein S13 (RPS13) gene expression in NK/T cell lymphoma. Sichuan Da Xue Xue Bao Yi Xue Ban 37: 464-466, 2006
  61. Yoshida H, Nozu F, Lankischo TO, Mitamura K, Owyang C, Tsunoda Y. A possible role for Ca(2+)/calmodulin-dependent protein kinase IV during pancreatic acinar stimulus-secretion coupling. Biochim Biophys Acta 1497: 155-167, 2000
  62. Yu JH, Lim JW, Kim H, Kim KH. NADPH oxidase mediates interukin-6 expression in cerulein-stimulated pancreatic acinar cells. Int J Biochem Cell Biol 37: 1458-1469, 2005 https://doi.org/10.1016/j.biocel.2005.02.004
  63. Yu JH, Lim JW, Namkung W, Kim H, Kim KH. Suppression of cerulein-induced cytokine expression by antioxidants in pancreatic acinar cells. Lab Inv 82: 1359-1368, 2002
  64. Yu JH, Kim KH, Kim H. SOCS 3 and PPAR-gamma ligands inhibit the expression of IL-6 and TGF-bata by regulating JAK2/STAT3 signaling in pancreas. Int J Biochem Cell Biol 40: 677-688, 2008 https://doi.org/10.1016/j.biocel.2007.10.007
  65. Yu JH, Kim KH, Kim H. Suppression of IL-1beta expression by the Jak 2 inhibitor AG490 in cerulein-stimulated pancreatic acinar cells. Biochem Pharmacol 72: 1555-1562, 2006 https://doi.org/10.1016/j.bcp.2006.07.008
  66. Zhou W, Shen F, Miller JE, Han Q, Olson MS. Evidence of altered cellular calcium in the pathogenetic mechanism of acute pancreatitis in rats. J Surg Res 60: 147-155, 1996 https://doi.org/10.1006/jsre.1996.0024

Cited by

  1. Down-regulation of HSP60 expression by RNAi increases lipopolysaccharide- and cerulein-induced damages on isolated rat pancreatic tissues vol.15, pp.6, 2009, https://doi.org/10.1007/s12192-010-0207-9
  2. A TRANSCRIPTOME ANALYSIS BY LASSO PENALIZED COX REGRESSION FOR PANCREATIC CANCER SURVIVAL vol.9, pp.1, 2009, https://doi.org/10.1142/s0219720011005744
  3. The ACE2-Angiotensin-(1–7)-Mas Axis Protects Against Pancreatic Cell Damage in Cell Culture vol.44, pp.2, 2009, https://doi.org/10.1097/mpa.0000000000000247
  4. Angiotensin-(1-7) attenuates caerulein-induced pancreatic acinar cell apoptosis vol.16, pp.3, 2017, https://doi.org/10.3892/mmr.2017.6982
  5. Angiotensin 1–7 ameliorates caerulein-induced inflammation in pancreatic acinar cells by downregulating Toll-like receptor 4/nuclear factor-κB expression vol.17, pp.3, 2009, https://doi.org/10.3892/mmr.2017.8354