DOI QR코드

DOI QR Code

Type II and III Taste Bud Cells Preferentially Expressed Kainate Glutamate Receptors in Rats

  • Lee, Sang-Bok (Department of Physiology and Neuroscience, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Cil-Han (Department of Physiology and Neuroscience, College of Dentistry, Gangneung-Wonju National University) ;
  • Kim, Se-Nyun (Department of Pharmacology and Mechanism, Research Institute, Oscotec Inc.) ;
  • Chung, Ki-Myung (Department of Physiology and Neuroscience, College of Dentistry, Gangneung-Wonju National University) ;
  • Cho, Young-Kyung (Department of Physiology and Neuroscience, College of Dentistry, Gangneung-Wonju National University) ;
  • Kim, Kyung-Nyun (Department of Physiology and Neuroscience, College of Dentistry, Gangneung-Wonju National University)
  • Published : 2009.12.31

Abstract

Glutamate-induced cobalt uptake reveals that non-NMDA glutamate receptors (GluRs) are present in rat taste bud cells. Previous studies involving glutamate induced cobalt staining suggest this uptake mainly occurs via kainate type GluRs. It is not known which of the 4 types of taste bud cells express subunits of kainate GluR. Circumvallate and foliate papillae of Sprague-Dawley rats (45~60 days old) were used to search for the mRNAs of subunits of non-NMDA GluRs using RT-PCR with specific primers for GluR1-7, KA1 and KA2. We also performed RT-PCR for GluR5, KA1, $PLC\beta2$, and NCAM/SNAP 25 in isolated single cells from taste buds. Taste epithelium, including circumvallate or foliate papilla, express mRNAs of GluR5 and KA1. However, non-taste tongue epithelium expresses no subunits of non-NMDA GluRs. Isolated single cell RT-PCR reveals that the mRNAs of GluR5 and KA1 are preferentially expressed in Type II and Type III cells over Type I cells.

Keywords

References

  1. Bigiani A. Mouse taste cells with glialike membrane properties. J Neurophysiol 85: 1552-1560, 2001
  2. Boughter Jr JD, Pumplin DW, Yu C, Christy RC, Smith DV. Differential expression of alpha-gustducin in taste bud populations of the rat and hamster. J Neurosci 17: 2852-2858, 1997
  3. Bowie D. External anions and cations distinguish between AMPA and kainate receptor gating mechanisms. J Physiol (London) 539: 725-733, 2002 https://doi.org/10.1113/jphysiol.2001.013407
  4. Bradlley RM, King MS, Wang L, Shu X. Neurotransmitter and neuromodulator activity in the gustatory zone of the nucleus tractus solitarius. Chem Sens 21: 377-385, 1996 https://doi.org/10.1093/chemse/21.3.377
  5. Caicedo A, Kim KN, Roper SD. Glutamate-induced cobalt uptake reveals non-NMDA receptors in rat taste cells. J Comp Neurol 417: 315-324, 2000 https://doi.org/10.1002/(SICI)1096-9861(20000214)417:3<315::AID-CNE5>3.0.CO;2-1
  6. Castillo PE, Malenka RC, Nicoll RA. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388: 182-186, 1997 https://doi.org/10.1038/40645
  7. Chittajallu R, Vignes M, Dev KK, Barnes JM, Collingridge GL, Henley JM. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 79: 78-816, 1993
  8. Chung KM, Lee SB, Heur R, Cho YK, Lee CH, Jung HY, Chung SH, Lee SP, Kim KN. Glutamate-induced cobalt uptake elicited by kainate receptors in rat taste bud cells. Chem Senses 30: 137-143, 2005 https://doi.org/10.1093/chemse/bji009
  9. DeFazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci 26: 3971-3980, 2006 https://doi.org/10.1523/JNEUROSCI.0515-06.2006
  10. Dingledine R, Conn PJ. Peripheral Glutamate Receptors: molecular biology and role in taste sensation. J Nutr 130: 1039S-1042S, 2000
  11. Farbmann AI. Fine structure of taste bud. J Ultrastruct Res 12: 328-350, 1965 https://doi.org/10.1016/S0022-5320(65)80103-4
  12. Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310: 1495-1499, 2005 https://doi.org/10.1126/science.1118435
  13. Herness MS, Chen Y. Serotonin inhibits calcium-activated $K^+$ current in rat taste receptor cells. NeuroReport 8: 3527-3261, 1997 https://doi.org/10.1097/00001756-199711100-00022
  14. Herness MS, Zhao FL, Lu SG, Kaya N, Shen T, Sun XD. Adrenergic signaling between rat taste recepter cells. J Physiol (Lond) 543: 601-614, 2002 https://doi.org/10.1113/jphysiol.2002.020438
  15. Huang YJ, Maruyama Y, Lu KS, Pereira E, Plonsky I, Baur JE, Wu D, Roper SD. Mouse taste buds use serotonin as a neurotransmitter. J Neurosci 25: 843-847, 2005 https://doi.org/10.1523/JNEUROSCI.4446-04.2005
  16. Jain S, Roper SD. Immunocytochemistry of GABA, glutamate, serotonin, and histamine in Necturus taste buds. J Comp Neurol 307: 675-682, 1991 https://doi.org/10.1002/cne.903070412
  17. Kim KN, Caicedo A, Roper SD. Glutamate-induced cobalt uptake reveals non-NMDA receptors in developing rat taste buds. NeuroReport 12: 1715-1718, 2001 https://doi.org/10.1097/00001756-200106130-00039
  18. Lee SB, Lee CH, Cho YK, Chung KM, Kim KN. Expression of kainate glutamate receptors in type II cells in taste buds of rats. Int J Oral Biol 33: 83-89, 2008
  19. Lerma J. Roles, and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 4: 481-495, 2003 https://doi.org/10.1038/nrn1118
  20. Lindemann B. Taste reception. Physiol Rev 76: 719-766, 1996
  21. Madden DR. The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3: 91-101, 2002 https://doi.org/10.1038/nrn725
  22. Mayer ML. Crystal structure of the GluR5 and GluR6 ligand binding cores: Molecular mechanisms underlying kainate receptor selectivity. Neuron 45: 539-552, 2005 https://doi.org/10.1016/j.neuron.2005.01.031
  23. Mezei LM, Store DR. Purification of PCR products. In: Griffin HG, Griffin AM ed, PCR technology: Current innovations. CRC Press, Boca Raton, p 13-19, 1994
  24. Murray RG. Mammalian taste bud type III cell: a critical analysis. J Ultrastruct Mol Struct Res 95: 175-188, 1986 https://doi.org/10.1016/0889-1605(86)90039-X
  25. Murray RG. The ultrastructure of taste buds. In: Friedmann I ed, The ultrastructure of taste organs. Amsterdam, North Holland, p 1-81, 1974
  26. Nagai T, Delay RJ, Welton J, Roper SD. Uptake and release of neurotransmitter candidates, $[^3H]$serotonin, $[^3H]$glutamate, and [3H]GABA, in taste buds of the mudpuppy, Nectrus maculosus. J Comp Neurol 392: 199-208, 1998 https://doi.org/10.1002/(SICI)1096-9861(19980309)392:2<199::AID-CNE4>3.0.CO;2-Y
  27. Passafaro M, Nakagawa T, Sala C, Sheng M. GABAnergic neuro transmission in rat taste buds: immunocytochemical study for GABA and GABA transporter subtypes. Nature 424: 677-681, 2003 https://doi.org/10.1038/nature01781
  28. Pumplin DW, Yu C, Smith DV. Light and dark cells of rat vallate taste buds are morphologically distinct cell types. J Comp Neurol 378: 380-410, 1997
  29. Raphael Y, Altschuler RA. Structure and innervation of the cochlea. Brain Res Bull 60: 397-422, 2003 https://doi.org/10.1016/S0361-9230(03)00047-9
  30. Roper SD. Cell communication in taste buds. Cell Mol Life Sci 63: 1494-1500, 2006 https://doi.org/10.1007/s00018-006-6112-9
  31. Song I, Huganir RL. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25: 578-588, 2002 https://doi.org/10.1016/S0166-2236(02)02270-1
  32. Yang R, Crowley HH, Rock ME, Kinnamon JC. Taste cells with synapses in rat circumvallate papillae display SNAP-25-like immunoreactivity. J Comp Neurol 424: 205-215, 2000 https://doi.org/10.1002/1096-9861(20000821)424:2<205::AID-CNE2>3.0.CO;2-F

Cited by

  1. Evidence for a role of glutamate as an efferent transmitter in taste buds vol.11, pp.None, 2009, https://doi.org/10.1186/1471-2202-11-77
  2. A matter of taste vol.10, pp.9, 2009, https://doi.org/10.12968/denn.2014.10.9.499