DOI QR코드

DOI QR Code

Intraocular Injection of Muscimol Induces Illusory Motion Reversal in Goldfish

  • Lee, Sang-Yoon (Department of Natural Sciences, College of Medicine, The Catholic University of Korea) ;
  • Jung, Chang-Sub (Department of Natural Sciences, College of Medicine, The Catholic University of Korea)
  • Published : 2009.12.31

Abstract

Induced activation of the gamma-aminobutyric $acid_A$ ($GABA_A$) receptor in the retina of goldfish caused the fish to rotate in the opposite direction to that of the spinning pattern during an optomotor response (OMR) measurement. Muscimol, a $GABA_A$ receptor agonist, modified OMR in a concentration-dependent manner. The $GABA_B$ receptor agonist baclofen and $GABA_C$ receptor agonist CACA did not affect OMR. The observed modifications in OMR included decreased anterograde rotation $(0.01\sim0.03\;{\mu}M)$, coexistence of retrograde rotation and decreased anterograde rotation $(0.1\sim30\;{\mu}M)$ and only retrograde rotation $(100\;{\mu}M\sim1\;mM)$. In contrast, the $GABA_A$ receptor antagonist bicuculline blocked muscimol-induced retrograde rotation. Based on these results, we inferred that the coding inducing retrograde movement of the goldfish retina is essentially associated with the GABAA receptor-related visual pathway. Furthermore, from our novel approach using observations of goldfish behavior the induced discrete snapshot duration was approximately 573 ms when the fish were under the influence of muscimol.

Keywords

References

  1. Barlow HB, Hill RM. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 139: 412-414, 1963 https://doi.org/10.1126/science.139.3553.412
  2. Barlow HB, Levick WR. The mechanism of directionally selective units in rabbit's retina. J Physiol 178: 477-504, 1965
  3. Caldwell JH, Daw NW, Wyatt HJ. Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J Physiol 276: 277-298, 1978
  4. Demb JB. Cellular mechanisms for direction selectivity in the retina. Neuron 55: 179-186, 2007 https://doi.org/10.1016/j.neuron.2007.07.001
  5. Egelhaaf M, Borst A. Pilz B. The role of GABA in detecting visual motion. Brain Res 509: 156-160, 1990 https://doi.org/10.1016/0006-8993(90)90325-6
  6. Gotz KG. Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der fruchtfliege Drosophila. Biol Cybern 2: 77-92, 1964 https://doi.org/10.1007/BF00288561
  7. He S, Masland RH. Retinal direction selectivity after targeted laser ablation of starburst amacrine cells. Nature 389: 378-382, 1997 https://doi.org/10.1038/38723
  8. Ishida AT, Cohen BN. GABA-activated whole-cell currents in isolated retinal ganglion cells. J Neurophysiol 60: 381-396, 1988
  9. Kaneko A, Tachibana M. GABA mediates the negative feedback from amacrine to bipolar cells. Neurosci Res Suppl 6: S239-S251, 1987 https://doi.org/10.1016/0921-8696(87)90020-X
  10. Kittila CA, Massey SC. Effect of ON pathway blockade on directional selectivity in the rabbit retina. J Neurophysiol 73: 703-712, 1995
  11. Kline K, Holcombe AO, Eagleman DM. Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field. Vision Res 44: 2653-2658, 2004 https://doi.org/10.1016/j.visres.2004.05.030
  12. Klooster J, Cardozo BN, Yazulla S, Kamermans M. Postsynaptic localization of gamma-aminobutyric acid transporters and receptors in the outer plexiform layer of the goldfish retina: An ultrastructural study. J Comp Neurol 474: 58-74, 2004 https://doi.org/10.1002/cne.20114
  13. Lin ZS, Yazulla S. Heterogeneity of GABAA receptor in goldfish retina. J Comp Neurol 345: 429-439, 1994 https://doi.org/10.1002/cne.903450309
  14. Maaswinkel H, Li L. Spatio-temporal frequency characteristics of the optomotor response in zebrafish. Vision Res 43: 21-30, 2003 https://doi.org/10.1016/S0042-6989(02)00395-4
  15. Mora-Ferrer C, Hausselt S, Hoffmann RS, Ebisch B, Schick S, Wollenberg K, Schneider C, Teege P, Jurgens K. Pharmacological properties of motion vision in goldfish measured with the optomotor response. Brain Res 1058: 17-29, 2005 https://doi.org/10.1016/j.brainres.2005.07.073
  16. Oyster CW, Takahashi E, Collewijn H. Direction-selective retinal ganglion cells and control of optokinetic nystagmus in the rabbit. Vision Res 12: 183-193, 1972 https://doi.org/10.1016/0042-6989(72)90110-1
  17. Paik SS, Park NG, Lee SJ, Han HK, Jung CS, Bai SH, Chun MH. GABA receptors on horizontal cells in the goldfish retina. Vision Res 43: 2101-2106, 2003 https://doi.org/10.1016/S0042-6989(03)00335-3
  18. Pakarian P, Yasamy MT. Wagon-wheel illusion under steady illumination: real or illusory? Perception 32: 1307-1310, 2003 https://doi.org/10.1068/p5133
  19. Pan ZH, Slaughter MM. Control of retinal information coding by GABAB receptors. J Neurosci 11: 1810-1821, 1991
  20. Purves D, Paydarfar JA, Andrews TJ. The wagon wheel illusion in movies and reality. Proc Natl Acad Sci USA 93: 3693-3697, 1996 https://doi.org/10.1073/pnas.93.8.3693
  21. Reichardt W. Evaluation of optical motion information by movement detectors. J Comp Physiol A 161: 533-547, 1987 https://doi.org/10.1007/BF00603660
  22. Schaerer S, Neumeyer C. Motion detection in goldfish investigated with the optomotor response is 'color blind'. Vision Res 36: 4025-4034, 1996 https://doi.org/10.1016/S0042-6989(96)00149-6
  23. Srinivasan MV, Poteser M, Kral K. Motion detection in insect orientation and navigation. Vision Res 39: 2749-2766, 1999 https://doi.org/10.1016/S0042-6989(99)00002-4
  24. VanRullen R. The continuous wagon wheel illusion depends on, but is not identical to neuronal adaptation. Vision Res 47: 2143-2149, 2007 https://doi.org/10.1016/j.visres.2007.03.019
  25. VanRullen R, Reddy L, Koch C. The continuous wagon wheel illusion is associated with changes in electroencephalogram power at approximately 13 Hz. J Neurosci 26: 502-507, 2006 https://doi.org/10.1523/JNEUROSCI.4654-05.2006
  26. Watanabe S, Koizumi A, Matsunaga S, Stocker JW, Kaneko A. GABA-mediated inhibition between amacrine cells in the goldfish retina. J Neurophysiol 84: 1826-1834, 2000
  27. Werblin FS. Response of retinal cells to moving spots: intracellular recording in Necturus maculosus. J Neurophysiol 33: 342-350, 1969
  28. Wyatt HJ, Daw NW. Specific effects of neurotransmitter antagonists on ganglion cells in rabbit retina. Science 191: 204-205, 1976 https://doi.org/10.1126/science.1857
  29. Yazulla S, Studholme KM, Vitorica J, de Blas AL. Immunocytochemical localization of GABAA receptors in goldfish and chicken retinas. J Comp Neurol 280: 15-26, 1989 https://doi.org/10.1002/cne.902800103
  30. Zanker JM, Srinivasan MV, Egelhaaf M. Speed tuning in elementary motion detectors of the correlation type. Biol Cybern 80: 109-116, 1999 https://doi.org/10.1007/s004220050509

Cited by

  1. The Role of the Pattern Edge in Goldfish Visual Motion Detection vol.14, pp.6, 2009, https://doi.org/10.4196/kjpp.2010.14.6.413
  2. CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning vol.280, pp.1775, 2009, https://doi.org/10.1098/rspb.2013.2509