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Mobile Robot Localization Based on Hexagon Distributed Repeated
Color Patches in Large Indoor Area
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(Hongxin Chen, Shi Wang, Hoosek Han, and Hyongsuk Kim)

Abstract : This paper presents a new mobile robot localization method for indoor robot navigation. The method uses hexagon
distributed color-coded patches on the ceiling and a camera is installed on the robot facing the ceiling to recognize these patches. The
proposed “cell-coded map”, with the use of only seven different kinds of color-coded landmarks distributed in hexagonal way, helps
reduce the complexity of the landmark structure and the error of landmark recognition. This technique is applicable for navigation in
an unlimited size of indoor space. The structure of the landmarks and the recognition method are introduced. And 2 rigid rules are
also used to ensure the correctness of the recognition. Experimental results prove that the method is useful.
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L INTRODUCTION

Capability of mobile robot localizations is required for robot
navigation and path tracking. Development of a reliable and
efficient mobile robot localization system has long been an
interest of many researchers. Previously, the dead reckoning
method has been widely used for most wheeled mobile robots to
calculate their location with respect to an inertial frame of
reference [1]. This method is simple but the accumulation of
errors caused by wheel slippage is a problem. To overcome this
drawback, ultrasonic sensors could be used. A robot can measure
time-of-flight (TOF) temporal data from its surroundings by using
several ultrasonic sensors. Given a known or partially recognized
structured environment, the temporal information can be
processed to obtain the robot’s spatial location by means of barrier
test [2-4], extended Kalman filtering with environment models [3-
6], fuzzy fusion logic [7], or neural networks [8]. The efficiency
of this method relies on the amount of a priori knowledge about
the environment. This results in complexity in system
implementation and practical use.

More recently, several research studies proposed the use of
landmarks. One of those is based on RFID (Radio Frequency
Identification) technology. A collection of RFID tags used as
artificial landmarks are distributed in the environment. Mobile
robot carries a RFID reader, which reads the RFID tags to localize
the mobile robot. Each RFID tag stores its own unique position,
which is used to calculate the position of the mobile robot [9-11].
Another technique is based on visual landmarks. Vision sensor
recognizes the feature of artificial or natural landmarks to
calculate the robot position. The technique in [12] used ceiling
lights as natural landmarks to navigate and that in [13] designed
64 different landmarks, each with a unique ID, installed on the
ceiling. Through identifying different ID, a mobile robot
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calculates its real position. But if the indoor space is very large, 64
different landmarks used in [13] will be insufficient.

This paper presents a method that uses coded color patches as
landmarks on the ceiling. One advantage of the proposed scheme
is that the size of the indoor space is not limited. Patch images are
acquired by a camera that faces the ceiling mounted on the mobile
robot. Based on image analysis, the robot can recognize the
patches and estimates its position with good and reliable accuracy.

II. DEFINITION OF THE COLOR CODED MAP
1. Map construction

With a vision based localization system using landmarks, at any
time, the robot determines its position by first identifying the
landmark ID. At any time, the camera must be able to see at least
one landmark. For simplicity, it is desired that the number of
landmarks is minimized. Fig. 1 shows the distribution of patches
on the ceiling. Each dot represents a patch with a certain ID.
Assume the distance between every two neighboring patches is
d', which is selected to ensure that camera can see at least one
patch at any time. From the patch’s position in the camera’s view,
a robot can calculate its real position.

Patches with different IDs must have different features, such as
different colors or different geometrical shapes. When more
distinguishable IDs are needed, features used for patches become
more complicated. For instance, more colors or more complex
shapes must be used. These create complexity in implementation
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Fig. 1. Patch distribution on the ceiling.
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Fig. 2. Distribution of hexagonal patch’s ID.

and lower the reliability in patch recognition. This will be a
problem especially for navigation in very large indoor space.

In this paper, a new method is proposed to solve this problem.
We construct a new map, named “cell-coded map”, in which, the
IDs of two patches at distance can be repeated. Fig. 2 shows the
distribution of seven patch’s ID. Any 7 neighboring patches will
be referred as a cell. In Fig. 2, it could be seen that IDs inside any
cell are different and in the whole map, only 7 different IDs are
needed. The way to construct and use the landmark map will be
explained below.

Let seven IDs in a cell be labeled I,.. Is. as shown in Fig. 3(a).

The sequence [/,---I;] must be assigned values using the

circular sequence as shown in Fig. 4 with a selected starting point.
Fig. 2 illustrates the map assigned in this way. Fig. 3(b) shows the
coordinates of each patch, with the center of the cell as the origin
of the reference frame. Where d is the distance of every two
neighboring patches.
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Fig. 3. Feature of each cell.

(c) Subtraction resut

~1 '\7
( B
6\5 s }

¥ 4. 93202 449 D.
Fig. 4. Circular chained ID.
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The robot’s localization system is a real-time system. Assume
that at the previous time, the ID recognized is «, , , and currently

the ID recognized is a,. Then a,and a_, must be inside the
same cell with a, | at the center, as long as the robot’s moving

distance at the interval is smaller than d . Since both are inside
the same cell, their IDs are different. The position of ID g

relative to that of ID q,_, could be known if the seven IDs are

assigned in a systematical way as described in the previous
paragraph. Equation (1) can be used for such computation.

AID=q,-a_,, a,a_ €{1,2,3,4,56,7} 4y

Substituting each 1D inside a cell into equation (1), for any
arbitrary cell, will result in values given in Fig, 3(c).

For all these IDs in Fig. 3(c), looking up in a table, as shown in
table 1, will result in values given in Fig. 3(b). These values
represent the relative coordinate (Ax,Ay) from a,_ to g,.

Assume that the coordinate system is as shown in Fig. 2, and
the coordinate for ID ga_, is (x,,,»,,) and that for g, is

(x,,¥;) . Using equation (1), and for the result values, looking up

in table 1, the coordinates for ID a, can be expressed as

G-
Vi Ay+y,,

So as long as the initial coordinate is given at the very
beginning, any later landmark’s coordinate could be calculated
depending on the previous one. This map is applicable for
unlimited indoor space.
2. Patch design

For the constructed map in the previous subsection, only seven
different patches will be needed. This can be done utilizing patch
shape. For example, circle may code digit 1, triangle - digit 2 and
so on. However, such a choice is not the best. The acquired image
can contain other ceiling elements with size and shape similar to
the patches, and geometric distortions, shape scaling and
orientation, etc. will significantly increase the computational

@

complexity in patch identification and also lower the identification
accuracy. Thus in the proposed approach a patch is characterized
only by color information. Permutations of different colors allow
coding of each unique number. As usually most ceilings are of a
solid color (white, tinge or gray with relatively low intensity and
texture variations), their color saturation represented in HSV color
space is quite low. The background in acquired images (which
represents the ceiling) can be then easily removed by the
saturation filter.

Colors with low similarity should be used. In this study, two
colors: yellow, orange were selected to form a patch. Our
experiments show that these colors are well distinguishable using

AID 0 1 5 3 y) 5 -
Relative NI B A1 51
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a camera. The permutation of three colors gives 2°=8 (>7) distinct
combinations (one color can be repeatedly used). Thus up to 8(>7)
different IDs can be coded by patches defined using this color
scheme. For our purpose, only seven are needed.

To determine the orientation of a patch, two white holes are
also added one into each of two squares, as shown in Fig. 5. The
patch orientation is defined by the vector from the center of the
hole in the middle square to that of the side one, as indicated by
the arrow in Fig. 5. Because the holes are white, they can be easily
extracted from the image by application of saturation filter.

III. PATCH IMAGE ANALYSIS
Fig. 6 shows the flow chart of patch image analysis. It
implements the following functions: image pre-processing,
estimation of patch orientation, ID recognition and error detection.
1. Pre-processing of Image

1) Transformation of RGB to HSV color space.

2) Application of the saturation filter to remove the ceiling
background by thresholding.

3) Application of intensity filter to remove any potentially
detected light sources (lamps) that have a very high
intensity image region. Again, this is done by image
thresholding.
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Fig. 6. Flow chart for the patch recognition.

4) Artifact removal by finding patch objects only. This is done
using connected component labeling, which finds the
candidate region that could represent the patch.

5) Since many patches can be detected in a single image, size
filtering is used to find the bigger one (based on its area)
and to remove the smaller remaining objects.

2. Estimation of patch orientation

Patch orientation is estimated using the locations of two
detected white holes as described in subsection 2.2. The patch
background is removed by application of saturation filter, as
shown in Fig. 7. Then connected component labeling is used to
extract the holes from the patch. To localize the holes, a scan
inside the boundary of the blue rectangle (that delineates the patch)
is performed. Elements found close to the boundary are discarded ,
and finally size filtering is used to select the biggest two
components as the holes.

Assume that the centers of two holes are points (x,,y,) and

(x,,y,), whereas the center of the blue rectangle is point
(x.,y,). Then the two distances from each hole to point
(x,,y,) are calculated. The one closer to (x,,y,) is concluded

to be the middle hole. Supposing that its center is determined to be
(x,,¥,), then the angle between x axis and the patch orientation

vector (see Fig. 8) can be calculated as
0=ATAN2( y, =y, %, =%, ) 3)

where ATAN2 is the four-quadrant inverse tangent function
(undefined only if both arguments are zero).
3. ID recognition based on patch colors

The coordinates of patch’s third square’s center point (x;,y,)

as shown in Fig. 8 can be easily calculated by the following

equation:
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Fig. 7. A sample of a patch image.
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Fig. 8. Estimation patch’s direction and ID.
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Computing the median hue value in a given neighborhood
around points (x,,%,), (x,,»,) and (x,,y;), three patch colors

can be evaluated. Then the number coded by this patch can be
extracted from the predefined codebook.
4. Error detection
Reliability and robustness are important in robot localization.
Patch detection errors could occur even with the proposed simple
patch structure. If an error is detected, the localization system
must reprocess to find a valid localization result. In the discussed
system, two rigid rules are used to ensure that the result is correct.
The first rule: the position of the center hole should be close to
the center of the blue rectangle that delineates the patch. The
following condition is checked:

Vo -5 + (3 - 3,)

VG =% + (7, = v,) <05 -

®

The second rule: the (x,,y,) coordinate calculated from two

different approaches should be the same; one of the method is by
equation (4) and the other is to be described below. As shown in
Fig. 9, assume @ is the angle between the x-axis and the patch

orientation vector, & is the distance between points (x,,),) and
(x,,¥,), x and x, rtepresent the x coordinates of the
rectangle’s left and right border, y, and y, represent the y

coordinates of the rectangle’s top and bottom border. Because
each of the patch components is a square, equation (6) can be
applied to compute coordinates (x,,y,). Here (x,,y,) is

replaced by (x;, 3).

(x5, 33) =
X +@ cos(%—ﬁ) Vs —@ cos(%—@)D, o e[O,%)
X, - @ cos(—%—ﬁ) Vs —%6 cos(—%— H)U,Q € [%,ﬂ)
X, —@ cos(%— H)I,y, +@ cos(%— B)D, fe [—7[,—%)
[x, + @ cos(—%— 9)‘,% + @ cos(—%—@)’j,ﬁ e [—%,0)
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Fig. 9. Illustration for error detection rules.
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This equation will depend on which quadrant 6 belongs to.

Result obtained using equation (6) can be compared with that
estimated by equation (4). The evaluated center point coordinates
(x5, ;) should be close to the values (x;,¥,). To check this,

the following condition is checked:

V& =5+ (0 - »,)

5 0]

VO =X+ (- ) <05x

If both inequalities in (5) and (7) are satisfied, the patch is
considered to have been correctly detected.

IV. EXPERIMENT AND RESULT

Experiments have been conducted with our experimental
system to test the feasibility of the proposed cell-coded
localization system.

1. Localization process

Fig. 10(a) shows our robot with a camera pointing toward the
ceiling. Fig. 11(b) shows the color patches on the ceiling. The
distance between two adjacent patches is 1 m.

At the very beginning, the robot’s initial position with respect
to a reference frame is known and given. The robot can then move
in any random way. The localization system analyzes the patches
in real time and calculates the position of any later observed patch
using equation (2). The robot’s coordinates can always be
calculated.

Fig. 11 shows one patch acquired by the camera. Assume that
the center point of each patch in real coordinate system is

(x,.,¥,), the center point of camera in real coordinate system is

@ (b)
% 10.(2) AR ARSE o1F 2R (b) g wEE 7
2} S,
Fig. 10. (a) mobile robot used in the experiments (b) color patc
hes on the ceiling.

Robot’s moving dircction

Center of camera
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Fig. 11. Computation of the sample patch location.
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Fig. 12. Measured errors.

(x,,y,) and the real distance from center of camera (which

denote accurate robot position projected onto the ceiling) to the
patch center is D. Then, equation (8) can be used for estimation of
accurate robot location:

(x,y)= (xpr ~Dxcos(6, -6, —%),ypr +Dxsin(6, -6, — %)J

®

The robot movement direction is then defined by the angle

%—91.

2. Results

Fifty positions have been tested at the velocity of 0.1nvs. Fig,
12 shows the estimation error for each sample. From this figure,
we can see, in most conditions, the estimation error is less than 5
cm and direction error is less than 3°.

V. CONCLUSION

In this paper, a new system for mobile robot localization was
presented. In this localization system, very simiple patches were
created on the ceiling as landmarks to facilitate a special map
named “cell-coded map”. Using the patches as reference, a mobile
robot can find its position and moving direction. Experimental
results demonstrated that the proposed system provides accurate
estimation of robot position. The evaluated localization error is
within the range of 5 centimeters while the direction error is less
than 3 degrees. This makes the proposed system reliable for
practical applications.
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