DOI QR코드

DOI QR Code

Design Issues of CMOS VCO for RF Transceivers

  • Ryu, Seong-Han (Department of Information and Communication Engineering, Hannam University)
  • Published : 2009.03.31

Abstract

This paper describes CMOS VCO circuit design procedures and techniques for multi-band/multi-standard RF transceivers. The proposed techniques enable a 4 GHz CMOS VCO to satisfy all requirements for Quad-band GSMIEDGE and WCDMA standards by achieving a good trade-off among important specifications, phase noise, power consumption, modulation performance, and chip area efficiency. To meet the very stringent GSM T/Rx phase noise and wide frequency range specifications, the VCO utilizes bond-wire inductors with high-quality factor, an 8-bit coarse tune capbank for low VCO gain(30$\sim$50 MHz/V) and an on-chip $2^{nd}$ harmonic noise filter. The proposed VCO is implemented in $0.13{\mu}m$ CMOS technology. The measured tuning range is about 34 %(3.17 to 4.49 GHz). The VCO exhibits a phase noise of -123 dBc/Hz at 400 kHz offset and -145 dBc/Hz at 3 MHz offset from a 900 MHz carrier after LO chain. The calculated figure of merit(FOM) is -183.5 dBc/Hz at 3 MHz offset. This fully integrated VCO occupies $0.45{\times}0.9\;mm^2$.

Keywords

References

  1. J. J. Rael, A. A. Abidi, 'Physical processes of phase noise in differential LC oscillators', in Proc. Custom Integrated Circuit Conf., pp. 569-572, May 2000
  2. E. Hegazi, H. Sjoland, and A. Abidi, 'A filtering technique to lower LC oscillator phase noise', IEEE J. Solid-State Circuits, vol. 36, pp.717-724, Dec. 2001 https://doi.org/10.1109/4.972142
  3. S. Ryu, Y. Chung, H. Kim, J. Choi, and B. Kim, 'Phase noise optimization of CMOS VCO through harmonic tuning', in IEEE Radio Freq. Integr. Circuits Symp., Long Beach, CA, pp. 403-406, Jun. 2005
  4. K. Lee, H. Yu, H. Ahn, H. Oh, S. Ryu, D. Keum, and B. Park, 'A 0.13-um CMOS $\Sigma$-$\Delta$ frequency synthesizer with an area optimizing LPF, fast AFC time, and a wideband VCO for WCDMA/GSM/ GPRS/EDGE applications', in IEEE Radio Freq. Integr. Circuits Symp., Atlanta, GA, pp. 299-302, Jun. 2008
  5. A. Koukab, Y. Lei, and M. J. Declercq, 'A GSMGPRS/UMTS FDD-TDD/WLAN 802.11a-b-g multistandard carrier generation system", IEEE J. SolidState Circuits, vol. 41, pp. 1513-1521, Jul. 2006 https://doi.org/10.1109/JSSC.2006.873928
  6. A. Hajimiri, T. H. Lee, 'Design issues in CMOS differential LC oscillators', IEEE J. Solid-State Circuits, vol. 34, pp. 717-724, May 1999 https://doi.org/10.1109/4.760384
  7. D. B. Leeson, 'A simple model of feedback oscillator noise spectrum', Proceedings of the IEEE, vol. 54, pp. 329-336, 1966 https://doi.org/10.1109/PROC.1966.4682
  8. Behzad, Razavi, RF Microelectronics, Prentice Hall PTR, 1998
  9. C. Comoy, B. Kim, 'RF transceivers for wireless in standard CMOS: some perspectives', IEEE Radio and Wireless Symp., pp. 7-10, Oct. 2006
  10. A. Wagemans, 'A 3.5 mW 2.5 GHz diversity receiver and a 1.2 mW 3.6 GHz VCO in silicon-on-anything', IEEE Int. Solid-State Circuits Conf Tech. Dig., pp. 250-251, Feb. 1998
  11. D. Ham, A. Hajimiri, 'Concepts and methods in optimization of integrated LC VCOs', IEEE J. Solid-State Circuits, vol. 36, pp. 896-909, Jun. 2001 https://doi.org/10.1109/4.924852
  12. G. De Astis, D. Cordeu, J. Paillot, and L. Dascalescu, 'A 5-GHz fully integrated full pMOS Lowphase-noise LC VCO', IEEE J. Solid-State Circuits, vol. 40, pp. 2087-2091, Oct. 2005 https://doi.org/10.1109/JSSC.2005.854601
  13. N. Fong, 'Design of wideband CMOS VCO for multiband wireless LAN applications', IEEE J. Solid-State Circuits, vol. 38, pp. 1333-1342, Aug. 2003 https://doi.org/10.1109/JSSC.2003.814440
  14. P. Adreanj, H. Sjoland, 'A 2.2 GHz CMOS VCO with inductive degeneration noise suppression', in Proc. IEEE Custom Integrated Circuit Conf, San Diego, CA, pp. 197-200, May 2001

Cited by

  1. Study on Improving the Phase Noise of Broadband Voltage-Controlled Oscillator vol.16, pp.3, 2016, https://doi.org/10.5515/JKIEES.2016.16.3.191