Effects of the Combined Extracts of Glycine Max Merr. and Glycyrrhiza Uralensis on the Activity of Murine Splenocytes and Macrophages

흑대두.감초 혼합추출물이 생쥐의 비장세포 및 대식세포의 활성에 미치는 영향

  • Published : 2009.12.25

Abstract

The purpose of this research was to investigate the effects of the extracts of Glycyrrhiza uralensis (GE) and the combined extracts of Glycine max Merr. and Glycyrrhiza uralensis (GGE) on the activity of murine splenocytes and macrophages. GE and GGE were administered orally twice a day for 7 days at the dose of 500 mg/kg. GE decreased the viability of T- and B-lymphocytes in splenocytes, but GGE increased the viability of B-lymphocytes in splenocytes. GE increased the population of B-lymphocytes in splenocytes, but decreased the population of T-lymphocytes and splenic $CD4^+$ cells. Also, GGE decreased the population of B-lymphocytes in splenocytes, but increased the population of T-lymphocytes and splenic $CD4^+$ cells. Furthermore, GE and GGE enhanced the phagocytic activity of peritoneal macrophages and the production of nitric oxide. These results suggest that the regulative action of immune response of GGE is more potent than their of GE.

Keywords

References

  1. 李時珍, 本草綱目, 北京, 人民衛生出版社, p 1501, 1982
  2. 許浚, 東醫寶鑑, 서울, 南山堂, p 589, 1987
  3. Yoshida, K., Sato, Y., Okuno, R., Kameda, K., Isobe, M., and Kondo, T. Structural analysis and measurement of anthocyanins from colored seed coats of Vigna, Phaseolus, and Glycine legumes. Biosci. Biotechnol. Biochem. 60: 589-593, 1996 https://doi.org/10.1271/bbb.60.589
  4. Sakai, T. and Kogiso, M. Soy isoflavones and immunity. J. Med. Invest., 55: 167-173, 2008 https://doi.org/10.2152/jmi.55.167
  5. Wu, D., Meydani, M., Leka, L.S., Nightingale, Z., Handelman, G.J., Blumberg, J.B., Meydani, S.N. Effect of dietary supplementation with black currant seed oil on the immune response of healthy elderly subjects. Am. J. Clin. Nutr., 70(4):536-543, 1999 https://doi.org/10.1093/ajcn/70.4.536
  6. Cassileth, B.R., Vickers, A.J. Soy: an anticancer agent in wide use despite some troubling data. Cancer Invest., 21(5):817-818, 2003 https://doi.org/10.1081/CNV-120023782
  7. Maeda, H., Katsuki, T., Akaike, T., Yasutake, R. High correlation between lipid peroxide radical and tumor-promoter effect: suppression of tumor promotion in the Epstein-Barr virus/B-lymphocyte system and scavenging of alkyl peroxide radicals by various vegetable extracts. Jpn J. Cancer Res., 83(9):923-928, 1992 https://doi.org/10.1111/j.1349-7006.1992.tb02001.x
  8. Liao, H.F., Chou, C.J., Wu, S.H., Khoo, K.H., Chen, C.F., Wang, S.Y. Isolation and characterization of an active compound from black soybean [Glycine max (L.) Merr.] and its effect on proliferation and differentiation of human leukemic U937 cells. Anticancer Drugs, 12(10):841-846, 2001 https://doi.org/10.1097/00001813-200111000-00008
  9. Jang, E.H., Moon, J.S., Ko, J.H., Ahn, C.W., Lee, H.H., Shin, J.K., Park, C.S., Kang, J.H. Novel black soy peptides with antiobesity effects: activation of leptin-like signaling and AMP-activated protein kinase. Int. J. Obes. (Lond)., 32(7):1161-1170, 2008 https://doi.org/10.1038/ijo.2008.60
  10. Kim, H.J., Bae, I.Y., Ahn, C.W., Lee, S., Lee, H.G. Purification and identification of adipogenesis inhibitory peptide from black soybean protein hydrolysate. Peptides, 28(11):2098-2103, 2007 https://doi.org/10.1016/j.peptides.2007.08.030
  11. Zhao, Q.W., Lou, Y.J. Estrogenic activity and its mechanism of ethanol extract from black soybean. Zhongguo Zhong Yao Za Zhi, 31(10):825-828, 2006
  12. Takahashi, R., Ohmori, R., Kiyose, C., Momiyama, Y., Ohsuzu, F., Kondo, K. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J. Agric. Food Chem., 53(11):4578-4582, 2005 https://doi.org/10.1021/jf048062m
  13. Yamai, M., Tsumura, K., Kimura, M., Fukuda, S., Murakami, T., Kimura, Y. Antiviral activity of a hot water extract of black soybean against a human respiratory illness virus. Biosci. Biotechnol. Biochem., 67(5):1071-1079, 2003 https://doi.org/10.1271/bbb.67.1071
  14. Sakai, T., Kogiso, M. Soy isoflavones and immunity. J. Med. Invest., 55(3-4):167-173, 2008 https://doi.org/10.2152/jmi.55.167
  15. Chan, Y.C., Wu, C.C., Chan, K.C., Lin, Y.G., Liao, J.W., Wang, M.F., Chang, Y.H., Jeng, K.C. Nanonized black soybean enhances immune response in senescenceaccelerated mice. Int. J. Nanomedicine, 4: 27-35, 2009
  16. Chung, W.T., Lee, S.H., Kim, J.D., Sung, N.S., Hwang, B., Lee, S.Y., Yu, C.Y., Lee, H.Y. Effect of the extracts from Glycyrrhiza uralensis Fisch on the growth characteristics of human cell lines: Anti-tumor and immune activation activities. Cytotechnology, 37(1):55-64, 2001 https://doi.org/10.1023/A:1016111713056
  17. Cheng, A., Wan, F., Wang, J., Jin, Z., Xu, X. Macrophage immunomodulatory activity of polysaccharides isolated from Glycyrrhiza uralensis Fish. Int Immunopharmacol. 8(1):43-50, 2008 https://doi.org/10.1016/j.intimp.2007.10.006
  18. Sun, H.X. and Pan, H.J. Immunological adjuvant effect of Glycyrrhiza uralensis saponins on the immune responses to ovalbumin in mice. Vaccine, 24(11):1914-1920, 2006 https://doi.org/10.1016/j.vaccine.2005.10.040
  19. Abbas, A.K., Lichtman, A.H. and Pober, J.S. Cellular and Molecular Immunology. 2ed. Saunders, p 5, 1994
  20. Wysocki, L.J. and Sato, V.L. Planning for lymphocytes: A method for cell selection. Proc. Nat1. Acad. Sci. USA., 75: 2844, 1978 https://doi.org/10.1073/pnas.75.6.2844
  21. Mizel, S.B., Openheim, J.J. and Rosensteich, D.L. Characterization of lymphocyte-activating factor(LAF) produced by the macrophage cell line P388D1. J. Immunol. 120: 1497, 1979
  22. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J. Immunol. methods, 65: 55, 1983 https://doi.org/10.1016/0022-1759(83)90303-4
  23. Kotnic, V. and Fleischmann, W.R.Jr. A simple and rapid method to determine hematopoietic growth factor activity. J. Immunol. methods, 129: 23, 1990 https://doi.org/10.1016/0022-1759(90)90416-S
  24. Suda, T. and Nagata, S. Purification and characterization of the Fas-ligand that induces apoptosis. J. Exp. Med., 179: 873-879, 1994 https://doi.org/10.1084/jem.179.3.873
  25. Boudard, F., Vallot, N., Cabaner, C. and Bastide, M. Chemiluminenscence and nitrite determinations by the MALU macrophage cell line. J. Immunol. Methods, 174: 259, 1994. https://doi.org/10.1016/0022-1759(94)90030-2
  26. Blair, A.L., Cree, I.A., Beck, J.S. and Hating, M.J.G. Measurement of phagocyte chemiluminenscence in a microtiter plate format. J. Immunol. Methods, 112: 163, 1988 https://doi.org/10.1016/0022-1759(88)90352-3
  27. Chok, P.W., Choon, S.P. and Benjamin, H.S. A rapid and simple microfluorometric phagocytosis assay. J. Immuno. Methods, 162: 1, 1993 https://doi.org/10.1016/0022-1759(93)90400-2
  28. Rockett, K.A., Awburn, M.M., Cowden, W.B. and Clark, I.A. Killing of Plasmodium faciparum in vitro by nitric oxide derivatives. Infec. Immunity, 59(9):3280, 1991
  29. Breiheim, G., Stendahl, O. and Dahlgren, C. Intra- and extracellular evevts in luminol-dependent chemilulinescence of polymorphonuclear leukocytes. Infect. Immun., 45: 1, 1984
  30. Miceli, M.C. and Parnes, J.R. The role of CD4 and CD8 in T cell activation and differentiation. Advances in Immunology, 53: 59, 1993 https://doi.org/10.1016/S0065-2776(08)60498-8
  31. Charles, A.J., Paul, T., Mark, W. The immune system in health and disease. 4ed, Garland Pub. p 463, 2000
  32. Channon, J.Y., Leslie, C.C. and Johnston, Jr.R.B. Zymosan-stimulated production of phosphatidic acid by macrophages: relationship to release of superoxide anion and inhibition by agents that increase intracellular cyclic AMP. J. Leucocyte Biol., 41: 450-455, 1987 https://doi.org/10.1002/jlb.41.5.450
  33. Jun, C.D., Park, S.K., Kim, J.M., Kim, J.D. and Kim, S.H. Nitric oxide inhibits macrophage pseudopodia formation in the activated macrophages. Kor. J. Immunol., 18: 635-644, 1996