DOI QR코드

DOI QR Code

Self-Assembled InAs/AlAs Quantum Dots Characterization Using Photoreflectance Spectroscopy

자연 성장된 InAs/AlAs 양자점의 Photoreflectance 특성

  • Kim, Ki-Hong (Department of visual optics, Kyungwoon University) ;
  • Sim, Jun-Hyoung (Department of physics, Yeungnam University) ;
  • Bae, In-Ho (Department of physics, Yeungnam University)
  • Published : 2009.05.30

Abstract

The optical characterization of self-assembled InAs/AlAs quantum dots(QD) grown by MBE were investigated using photoreflectance spectroscopy. The intensities of the signals of the GaAs buffer and wetting layer(WL) changed with the width of the WL layer. The PR spectrum for the sample, in which QDs layer were etched off at room temperature, indicated that the broadened signal ranging $1.1{\sim}1.4\;eV$ was originated from InAs QDs and WL. The intensities of signals of GaAs buffer and the WL changed with the WL width. A red shift of the PR peak of WL are observed when the annealing temperatures range from $450^{\circ}C$ to $750^{\circ}C$, which indicates that the interdiffusion between dots and capping layer is caused by improvement in size uniformity of QDs.

MBE법으로 성장된 InAs/AlAs 양자점(quantum dots; QD) 구조의 광학적 특성을 photoreflectance(PR) 이용하여 조사하였다. Wetting layer(WL) 두께에 따른 전체 장벽의 폭이 달라짐에 따라 GaAs 완충층 및 WL 신호의 세기가 변화되었다. QD 층이 식각된 시료의 상온 PR측정 결과로부터 $1.1{\sim}1.4\;eV$ 영역의 완만한 신호는 InAs QDs과 WL에 관련된 신호임을 알았다. 온도 $450{\sim}750^{\circ}C$범위에서 열처리 시켰을 때 WL층의 PR 신호가 red shift하였는데, 이는 열처리 후 InAs WL와 AlAs층 사이에 Al과 In의 내부 확산에 의해 양자점의 크기가 균일하게 재분포 되고, WL의 임계 두께가 증가하였음을 나타낸다.

Keywords

References

  1. W. R. Frensley, Heterostructure and Quantum Well Physics, (Academic Press, 1995)
  2. E. Kapon, D. M. Hwan, and R. Bhat, Phys. Rev. Lett. 63, 430 (1989) https://doi.org/10.1103/PhysRevLett.63.430
  3. P. Harrison, Quantum Wells, Wires and Dots, (The University of Leeds, UK, 1999)
  4. 김현진, 윤의준, 전자공학회지 30(5), 53 (2003)
  5. S. Ganapathy, M. Kurimoto, P. Thilakan, K. Uesugi, I. Suemune, H. Machida, and N. Shimoyama, J. Appl. Phys. 94, 4871 (2003) https://doi.org/10.1063/1.1606515
  6. J. Y. Leem, M. Jeon, J. Lee, G. Cho, C. R. Lee, J. S. Kim, S. K. Kang, S. I. Ban, J. I. Lee, and H. K. Cho, J. Cryst. Growth, 252, 493 (2003) https://doi.org/10.1016/S0022-0248(03)00866-2
  7. A. O. Kosogov, P. Werner, and U. Gosele, Appl. Phys. Lett. 69, 3072 (1996) https://doi.org/10.1063/1.116843
  8. R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. L. Weber, Phys. Rev. B 58, R4262 (1998) https://doi.org/10.1103/PhysRevB.58.R4262
  9. E. K. Kim, J. S. Kim, K. Park, E. Yoon, and S. K. Noh, J. Korean Phys. Soc. 46, S117 (2005)
  10. G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G. Wang, J. Cryst. Growth, 269, 181 (2004) https://doi.org/10.1016/j.jcrysgro.2004.05.058
  11. D. E. Aspnes, Phys. Rev. B10, 4228 (1974) https://doi.org/10.1103/PhysRevB.10.4228
  12. D. E. Aspnes, Surf.Sci. 37, 418 (1973) https://doi.org/10.1016/0039-6028(73)90337-3
  13. D. Bimberg, Jpn, J. Appl. Phys. 35, 1311 (1996) https://doi.org/10.1143/JJAP.35.1311
  14. J. Porsche, A. Ruf, M. Geiger, and F. Scholz, J. Crystal Growth, 195, 591 (1995)
  15. B. Bansal, M. R. Gokhale, A. Bhattacharya, and B. M. Arora, J. Cryst. Growth, 298, 586 (2007) https://doi.org/10.1016/j.jcrysgro.2006.10.154
  16. Z. Zaaboub, B. Ilahi, L. Sfaxi, and H. Maaref, Materials science & engineering C 28, 1002 (2008) https://doi.org/10.1016/j.msec.2007.10.069

Cited by

  1. Optical Properties of InAs Quantum Dots Grown by Using Indium Interruption Growth Technique vol.18, pp.6, 2009, https://doi.org/10.5757/JKVS.2009.18.6.474
  2. Optical Characteristics of Multi-Stacked InAs/InAlGaAs Quantum Dots vol.20, pp.6, 2011, https://doi.org/10.5757/JKVS.2011.20.6.442
  3. Effect of Growth Temperature on the Luminescence Properties of InP/GaP Short-Period Superlattice Structures vol.24, pp.1, 2015, https://doi.org/10.5757/ASCT.2015.24.1.22