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Nonlinear Control of an Electromagnetic Levitation System Using
High-gain Observers for Mmagnetic Bearing Wheels

H s, MY oM dSH, A S
(Ho-Lim Choi, Hee-Sub Shin, Min-Sung Koo, Jong-Tae Lim, and Yong-Min Kim)

Abstract: In this paper, we develop a functional test model for magnetic bearing wheels. The functional test model is an
electromagnetic levitation system that has three degree of freedom, which consists of one axial suspension from gravity and two axes
gimbaling capability to small angels. A nonlinear controller with high-gain observers is proposed and the real-time experiment results
show that the rotor is accurately levitated at the desired position and weli-balanced, which is a suitable result for the potential use an
magnetic bearing wheels. Also, the proposed scheme exhibits better performance when it is compared with the conventional PID

control method.
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I. INTRODUCTION

In general, a spacecraft in orbit is equipped with reaction
wheels serving as actuators in the attitude control system and ball
bearing wheels have been dominantly used in reaction wheels.
However, among various kinds of on-board system components,
ball bearing wheels have been identified as one of the main
sources of vibration noise due to the wear in mechanical contact
of a rotor, residual imbalances, and bearing imperfections [1].
These problems can be greatly reduced by using magnetic bearing
wheels. Magnetic bearing wheels can suspend the rotor by the
magnetic or electromagnetic forces with high-precision and high-
rotational speed of the rotor, no mechanical contact, and no use of
lubrication [2].

For the development of magnetic bearing wheels, there have
been several results reported in [2-4]. The main component of
magnetic bearing wheels is the electromagnetic levitation system
(EMLS) which is usually modeled as a nonlinear system [5-10].
Interestingly, the EMLS is often feedback linearizable such that
various feedback linearizing control approach yields a better
performance over the conventional linear approach [4,6]. The
nonlinear controllers in [4] and [6] use full state information while
our method is an output feedback control scheme. Moreover, in
our approach, we can use & to reduce the disturbance effect.

In this paper, we use a functional test model (FTM), which is an
EMLS, for magnetic bearing wheels. In the FTM, the active
control of three degrees of freedom is possible, which consists of
one axial suspension from gravity and two axes gimbaling
capability to small angles. A feedback linearizing nonlinear
controller with a gain-scaling factor is proposed and high-gain
observer is used in order to estimate the velocities of levitation
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and gimbal angles of the rotor. The theoretical backgrounds of the
proposed control technique and high-gain observer are well
addressed in [11,12] and [13,14], respectively. In particular, the
high-gain observer is robust against model uncertainty and its
structure is continuous unlike the sliding-mode observer used in
[15]. This new ‘feedback linearizing nonlinear controller with a
gain-scaling factor’ has advantage over the traditional feedback
linearizing controiler used in [4,6,9] in the sense that its robustness
against system uncertainty and systematic design procedures are
well addressed.

Experiment results show that the proposed controller achieves
the accurate positioning of the rotor under the narrow gap
condition, which is a suitable result for magnetic bearing wheels.
The proposed nonlinear control approach exhibits improved
performance over the previously designed conventional PID
control approach in [1], which is consistent with results reported
in [4,6]. Moreover, the stability analysis with a simple systematic
controller design procedure is given, which can be a guideline in
tuning controller gains for control engineers.

1I. MODEL OF THE ELECTROMAGNETIC
LEVITATION SYSTEM

Fig. 1 shows the schematic diagram of the FTM that has three
degrees of freedom which consists of z axis suspension from
gravity, and x and y axes gimbaling capability to small angles. The
meanings of symbols used in Fig. 1 are summarized in Table 1.
The FTM is built in a way that four electromagnets levitate the
rotor when the currents are engaged into each electromagnet. The
dynamics of the FTM is

mi=fi ot it fa-mg =T, 16=T, ()

where m is the mass of the rotor, I is the moment of inertia of
the rotor for the x and y axes, g is the gravitational force, and 7,
and T, are the torques of the x and y axes. Each torque can be

represented by
Tx:VVe(f'Z‘f;l)’Ty:We(js_ﬁ) (2)
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Fig. 1. Schematic diagram of the FTM.

Under the assumption that the angle displacement of the rotor
are small, the approximate equations of gap sensor measurement
L, can be expressed as follows [1].

L =Ly -2+ WO
Zsz =Ls2 —Z*WSQ—VV’S¢
=L, ~z-Wo+Hg

3
/ 3
L, =L, ~z+WOB+W¢

$4
Then, from (3) and the structure of the FTM, z,4, and ¢ can

be obtained using the gap sensor measurement I, as follows [1].

E 1. FIMe] o] 2291 4 Ee] ou),
Table 1. Meanings of symbols in schematic diagram of the FTM.

Symbol Meaning (for 7 =1,---,4 where applicable)

E; Electromagnet

fi Electromagnetic forces generated by electromagnet

S; Gap sensor

@ Rotational angle of the x axis

é Rotational angle of the y axis

z z axis displacement

W, Length from the center of the rotor to the gap sensor

W Length from the center of the rotor to the

¢ electromagnet

] Gap sensor measurement: displacement from the
5 gap sensor to the rotor

L, Displacement from the electromagnet to the rotor

I Distance from the gap sensors to the rotor at the
% ground position

I Displacement from the electromagnet to the rotor at
% | the ground position

RO - 2% - AAESS =2X M 16 2, M6 2 2009.6
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Fig. 2. Prototype of the FTM.
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1

0= W, +14, — 14, — 1)~ Ly, + Ly, - L, —L)]

4w,

Finally the actual FTM is shown in Fig. 2. The four
electromagnets and sensors are attached inside the cover of the
system, and the rotor stays on the base. Thus, the cover is
equivalent to the stator and the base supports the rotor. Four pairs
of electromagnets with coils are used to generate the
electromagnetic forces to pull the rotor in the z direction for
levitation. Four gap sensors are used to measure the suspension
displacement of the rotor.

111. CONTROLLER DESIGN USING
HIGH-GAIN OBSEREVRS

1. Quarter-mode| approach

Our control objective is to levitate the rotor to a certain height
while keeping the gimbal angles to zeros such that the rotor is
well-balanced while it is levitated on the flat platform. Thus, the
system can be a high-performance magnetic bearing used for
reaction wheels in a satellite. The FTM has four electromagnets
and our first control approach is to divide the system into four
pieces as shown in Fig. 3 where x,denotes the actual height of

each piece.
The relation between each coil current and electromagnetic

_____________

(a) Four divided system (b) Description of each quarter model

I9 3,487 B4
Fig. 3. Quarter-model.
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force is described by

I, |81
i= l, i=1---,4 )
n \ y,G

where i;is the coil current of the ith electromagnet, # is the

number of coil turn, g, is the magnetic permeability in the air,
and G is the cross are of each electromagnet.

Then, when we consider only the quarter-model of the system,
we obtain the following system dynamics similarly to (1) by
taking one quarter of rotor mass and assuming only single
electromagnetic force f; is applied to each piece. For i=1,---,4,

we have

m .. m
me_ . mg

4 i i 4 (6)

Then, we obtain the following SISO nonlinear system from (5)
and (6).

G ntu,

F e B
2m (Le,v _xi)2 £ (7)

where we let u; =i? as a control input.

Letting x; =x; and X; =x, and considering the possible
model uncertainty caused from any deviation between ideal and
actual model, we obtain the following feedback linearizable
second-order nonlinear system. For i=1,:.-,4, the four quarter-

model systems are

X, =X, + 8, (t,x;,u;)

2

G  nuy ®
o= —— g+, (t,x;,1
T om @, %) g+, (1 x;,1;)

where 51‘]» (t,x;,u;), j =12 denote model uncertainty with an

assumption that 51‘/ (tx,u;) S| x; | +] X, D, j=12.

17
Now, our control approach is to design a robust nonlinear
controller which sends each x;  to a reference height z,,,. That
is, when each designed controller levitates its own piece of rotor,

the rotor will be levitated robustly at the desired position overall.
Under the designed FTM environment, x, is the only available

information from the sensor measurement. Thus, we design the
following high-gain observer to estimate the velocity of X - The
high-gain observer is designed by copying the system equation
plus an error injection term with a high-gain factor &; . The
robustness of high-gain observer with ¢, is well-addressed in
the literature [12-14].

Xy =Xy

8_1(xi1_‘£i1)

L
9

TS Y

®2m (L, -x,) BT

where &; >0 isa high-gain factor to be adjusted.
The observer gains /; and /, are selected such that the

following matrix 4; becomes Hurwtiz.

4, = hol (10)
Lo
Now, with the observer, the following feedback linearizing

controller is introduced. The first multiplicative term is to cancel
the input nonlinearity.

i HoG n’

K K

L, —x) R
_ 2m M[k_;(xil —Zref)+j_2xi2 +g] an
g

For the selection of controller parameters, k; and k, are

selected such that the following matrix 4 becomes Hurwtiz.

A—kll 12
=k, o (12)

The gain-scaling factor £, >0 has a function of adjusting the
controller speed and robustness. As &, becomes smaller, the
controller has more robustness against the triangular-type model
uncertainty and achieves a faster system response due to the high-
gain control input. The theoretical results in [11,12] regarding the
robustness of proposed control and observer along with selection
of Ay, A4;, €., &; is briefly addressed in the Appendix.

2. Compensation for two rotational angles

In the previous section, the nonlinear controllers are designed
for each quarter-model system independently. However, as shown
in Fig. 1, there are two gimbal angles ¢ and & along the x and
y axes. Since our control goal is to keep the rotor well-balanced, it
is important to keep ¢ and & at zero. As noted in (1) and (2),
0 is related with two forces f, and f; and ¢ is related
with two forces f, and f,. Thus, it is reasonable to assume

that & and ¢ are decoupled from each other. Due to the fact
that the lifting speed of each quarter modei is somewhat different
because of model uncertainty, there may be imbalance of rotor
during the transient period. Thus, we need to add a compensator
to the controller developed in (11) for compensating the gimbal
angle 6. From (1), (2) and (5), we have the following dynamics.

2
é — I/Velu()Gn Us ~- H - (13)
8[ (Le3 - x31 ) (Lel - xll)
Letting 6 =7, and 6= 17,, We obtain
7 =1,
. W, u,Gn 2 Uy u; (14)
=

81/ (L, — %) (Lo —x,)°

Since only 77, is available as noted in (4), we again design the
following high-gain observer to estimate the velocity of 7,.
A N
m=1m,——n—m)
&

(15)

- —25‘(771 -17)
&L

WG’ LE! !
(LY 2L 2
(Le, —%3))"  (Lg —x,,)

€l
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where the selection rules of /,, and &; are the same as in (9).

Now, with the estimated 7j,, the controller in (11) is modified

into the final form as follows by adding the balancing
compensation term. For controllers 1, and u;, we have

2m Ly —x) ( k k, .
U =——— —;(xh _Zref)+_2x12 +A)
HoG n gk gy 16)
2m (L, %) Ky K .
Uy =—— | (X3 —Z, )+ = Fy, + A
oG n £k Ex

where A =gtamy +ayy,  Ay=g+bm +byy,, the

compensator gains a;, a,, b, and b, are to be selected.
Now, for two quarter-models (i =1and 3) in (8) and gimbal
angle 6 dynamics in (14), the closed-loop system with the

controller (16) and observers (9) and (15) is summarized as
follows.

A * % *

. 0 4,(s 0 0

EZ L( L) E (17)
0 0  A() O
0 0 0 A(g)

where
E:[X9X1’X3a77]15
X:[xll _Zref’x1’x31 —Zref7x32a771’772]AT;

¥ o_ A T T A A 9T
Xl—[x1l‘x1[ax1z—x12] , X3—[x31—x31,x32—x32] >

17 =m —.m, —ﬁz]T, and

[0 1 0 0 0 0]
K k
i j 0 0 a4 a
0 0 0 1 0 0
A= k k 18
0 i ﬁ b b 18
0 0 0 0 1
L L L I N A 5
| s}é K S12( K J
where T'=a(h —a)), I[1=a(b, —a,) with a= u:f;” and
=1
A (gr) = Loy 19

o

The design procedure of the controller parameters are
summarized as follows.
() Select the pairs of gains (k,4,) and (J;,,) such that
Ay and A; are Hurwitz,
(ii) Select high-gain factors £, >0 and £, >0 in order to
adjust the controller and estimator convergence speed and
their robustness. In practice, we choose &,&; <<1 to

provide fast system response, fast observer convergence, and
robustness against uncertainty.
(iii) Select the compensator gains a;, a,, &, and b, to make

the matrix 4 Hurwitz.

Kot - 2% - AIAEEE =X M 15 &, X 6 & 2009. 6

Noting that 4;(g;) is Hurwitz forall &, >0 when 4, is
Hurwitz. It is easy to check that the closed-loop system (17)
becomes stable by following the above design procedure. Finally,
the other quarter-model systems (8) for i =2 and 4 and the
gimbal angle ¢ dynamics have the same structure. Thus, the
nonlinear controllers u, and u, can be analogously designed
for the other electromagnets £, and E, and the detals are
omitted.

Remark 1: Note that the closed-loop model (18) has some
algebraic constraints in the sense that the states in X are not
independent. That is, 7, and 7, depend on Xx;, X, Xy

and x, . However, the overall stability is still valid because the

convergence of Z to zero leads the convergence of each state to
zero as well.

IV. EXPERIMENT STUDY
1. Experiment setup

The major mechanical specification of the FTM is described in
Table 2. Fig. 4 shows the block diagram of system electronics to
control the FTM and Fig. 5 shows the actual hardware setup. The
main processor unit mainly consists of a 32-bit floating-point
digital signal processor (DSP) TMS320C32 from Texas
Instruments, a 12-bit analog-to-digital converter (ADC), and a
digital-to-analog converter (DAC). This DSP is adequate for fast
computation. It operates 30 million instructions per second
(MIPS) in 60MHz clock speed and is equipped with two 256 <32
on-chip RAM blocks, one serial port, two 32-bit timer interrupts,
and two DMA interrupts. The 12-bit ADC and the DAC are used
to read the output from the gap sensor and to generate the control
inputs to electromagnets, respectively. The ADC has 4 channels
and conversion time is 3us and the range of the input voltage is
from -5V to 5V. The conversion time of DAC is 10ps and the
range of the output voltage is from 0V to 10V,

The power module is used for the current control of the FTM,
which converts the output voltage of DAC to a suitable current
and transmits the current into the coil of the electromagnet. The
power module is linear-typed and the maximum output current is

£ 2. FTMe] £]3 sehre]
Table 2. Physical parameters of the FTM.

Physical quantities Values

w, 0.018725(m)

W, 0.026(m)

L, 0.0013(m)

L, 0.0008(m)

m 0.722(kg)

n 240

I 0.000877362(kg - m?)

Ho 47 x107(N/AY)
0.000100530944(m?)

g 9.81(m/s?)
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main processor unit

T 5 AEAA.
Fig. 5. Experiment setup.

1A and it can be adjusted with the variable register attached in the
differential amplifier. The AEC-5505 model of eddy current-typed
gap sensors from Applied Electronics Co., Ltd is used to measure
each distance. The resolution of gap sensor is Spm.

The electromagnets mounted in the FTM are SUS410
ferromagnetic material made by stainless steel. In our test, we
observe that the electromagnetic field is formed closely around
each electromagnet. Therefore, the interference of the
electromagnetic field between the neighboring electromagnets is
very small, which is a desirable phenomenon for the control of the
electromagnetic force of each electromagnet. The control
algorithm is written in Visual C++ with a sampling rate of 1kHz
on a standard IBM PC and then it is loaded into the DSP system
operation. Data acquisition program is also written in order to
store all necessary experiment results. For communication with
PC, a serial communication controller (SCC) Z85C30 and 1O
ports 82C55A are used..

1.1 Experiment results

We set a reference as [z,,7,8,,7,6,,,] = [0.3mm,0deg,0deg]

such that rotor can be freely rotated while levitated at
z = 0.3mm without touching the cover or base of the FTM. Since

L, is only 0.8mm, it is important to reduce any overshoot in the

control response to avoid any physical contact. According to the
design procedure given previously, we choose k& =-2.25,

ky=-3and [[=[,=-4 to make A4 and A, Hurwitz,
respectively. The eigenvalues of A, and A4, are placed at

—1.5 and -2, respectively so that the damping ratio is 1 and it
is expected that there is no overshoot in the system response. Then,
for the gain-scaling and high gain factors, we choose
£x =0.0082 and &, =0.02. Note that some extremely small
values of €y, &, (less than 0.001) may cause input saturation and

system failure. For the gimbal angles compensator gains,
a,=a, =200 and b =b, =—400 are selected.

In the previous control approach in [1], a conventional PID
controller is designed due to its simplicity. The PID controller
used in {1] takes the form of

u=Kpe+Kp % + K, [ e(z)dz (20)

where u=[f,,T,.T,]", e=lz—z,.,6—,,,0—6,,], and
the force f, and the torques 7,,T, are distributed to each

electromagnet of the FTM using the least squares method as
follows [1].
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(a) Rotor levitation and gimbal angles
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Fig. 6. Experiment result by the conventional PID controller.
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In [1], the selected PID gains are X » = diag{1000,20,20],
K; = diag[5000,8.33,8.33], and K, = diag[100,0.013,0.013].
When we compare the performances of both control approaches
in the actual experiment, the conventional PID controller exhibits
a slower response with some large overshoot. This overshoot
leads to more consumption of current, which is not adequate for
the embedded system with limited resource like a satellite. As
shown in Figs. 6-7, we observe that the proposed nonlinear
controller shows more uniform control inputs and smaller
deviations in gimbal angles ¢ and 6 at the steady state. The

0.8 T T T T T T
06} al
E 04 3
W
02 -
[} 2 4 6 8 10 12 14 16 18 20
0.1 T T T T T
0051 4
=
3 o
<
005k : B
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(a) Rotor levitation and gimbal angles
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(b) Current inputs
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Fig. 7. Experiment result by the proposed controller.
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performance differences can be clearly seen through the tracking
error comparison in Fig. 8. The experiment results are consistent
with simulation results with an acceptable error. In order to check
the controller response against the external disturbance, we
slightly raise the rotor using a small stick for a few seconds and
then remove stick. As shown in Fig. 9, the rotor is quickly
returned to the reference position without any notable overshoot.
From this experiment, we observe that the proposed nonlinear
control approach is more adequate since the FTM will be
eventually targeted for reaction wheel as an attitude control
system in a satellite. Moreover, it is shown that the proposed
control can be designed more systematically along with stability
analysis whereas the conventional PID controller is more an ad-
hoc based linear approach.

V. CONCLUSIONS
In this paper, we have developed an electromagnetic levitation
system for magnetic bearing wheels. A nonlinear controller with a

0.4 T T T T T T T T T
03k ; : ; N PP
: By PID controller
o2 : . / :
= Lo
£ 0.1
N
£
B oo
w
>
£
3
@ 4
= 01 ;
By the proposed method
02 -
-0.3 .
04 I L L 1 L L : I I
0 2 4 6 8 10 12 14 16 18 20

time[sec]

T 8 < el 3 Ale] e4pe] BlaL
Fig. 8. Tracking error comparison of both methods.

i 1Al
ifAl

ioJAl
14Al

0 5 10 4 5 10
time[sec] time[sec]

T 9. At o] A - o] dig 2H ¥k
Fig. 9. Control result by the proposed method - behavior of the rotor
under the external disturbance.
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gain-scaling factor is proposed and high-gain observer is used in
order to estimate the velocity of z, ¢, €. Experiment results

show that the proposed controller achieves the accurate
positioning of the rotor under the narrow gap condition, which is a
suitable result for magnetic bearing wheels. The proposed
nonlinear control approach exhibits better performance over the
conventional PID control approach. Moreover, the stability
analysis with a simple systematic controller design procedure is

given. Also, the robustness is tested under the external disturbance.

Under the current system, the FTM supports only the attractive
forces for the rotor, thus the repulsive force cannot be generated.
Moreover, it is necessary to have x, y-transitional motion and z-
rotational motion for the rotor to be an actual candidate for
magnetic reaction wheels. As a future research topic, the hardware
set for generating repulsive force, x, y-transitional motion, z-

rotational motion will be developed in the next development stage.

VI. APPENDIX
Consider the following SISO system

X =Ax+ Bu+6(t,x,u)

2
y=Cx

where x e R" is state, (i, y) is an input and output pair, (A4, B)
is a Brunovsky canonical pair, C=[1,0,---,0], and &(t,x,u)
=[6,(t,x,u), -6, (¢, x,u)]" represents system uncertainty which
includes model/parameter uncertainty and disturbance, etc. Note
that the system (22) represents a class of feedback linearized

system with uncertainty. Suppose that this system uncertainty
satisfies the following triangularity condition:

St xu) S| x|+ |x; ), i=1,m 23)

Then, the following controller with a gain-scaling factor &
stabilizes the system (22) when A4+ B[k, --,k,] is Hurwitz
(see (12)) and & is sufficiently small (g, <<1) [11]:

ke

u=K(eg)x, K(eg) :|:

k
e >0 (24)
e g

In particular, by following the stability analysis in [11], with
V(x)=x"P(g)x with AgP+PA, =1, P(s,)=E(&,)
PE(gy), E(sy)=diagll,ex, &% where A, is Hurwitz,

we can obtain that
V() <—(ex' —c(l+-+ e || Eleg)x | 5)

Thus, &, is chosen to suppress the uncertainty and also tuned

for faster system response.

Then, the controller (24) is combined with a high-gain observer
[12,14] to make the overall controller robust and have fast system
response. Thus, the effect cause by system uncertainty becomes
negligible by suppressing it. The robustness analysis of observer is
very similar to the analysis for controller. In summary, similarly to

controller case, when A +[/,,- ~-,ln]TC is Hurwitz (see (10) and
g, is sufficiently small (g, <<1), the observer robustly

converges to actual state values. The more detailed theoretical
backgrounds regarding the effect of gain-scaling factors £, £,

are addressed in [11,12] (see Corollary 1).
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