DOI QR코드

DOI QR Code

Similarity Relations of Resin Flow in Resin Transfer Molding Process

  • Um, Moon-Kwang (Korea Institute of Materials Science, Composite Materials Group) ;
  • Byun, Joon-Hyung (Korea Institute of Materials Science, Composite Materials Group) ;
  • Daniel, Isaac M. (Departments of Civil and Environmental Engineering and Mechanical Engineering, Center for Intelligent Processing of Composites, Northwestern University)
  • Received : 2007.12.18
  • Accepted : 2008.05.09
  • Published : 2009.06.01

Abstract

Liquid molding processes, such as resin transfer molding, involve resin flow through a porous medium inside a mold cavity. Numerical analysis of resin flow and mold filling is a very useful means for optimization of the manufacturing process. However, the numerical analysis is quite time consuming and requires a great deal of effort, since a separate numerical calculation is needed for every set of material properties, part size and injection conditions. The efforts can be appreciably reduced if similarity solutions are used instead of repeated numerical calculations. In this study, the similarity relations for pressure, resin velocity and flow front propagation are proposed to correlate another desired case from the already obtained numerical result. In other words, the model gives a correlation of flow induced variables between two different cases. The model was verified by comparing results obtained by the similarity relation and by independent numerical simulation.

Keywords

References

  1. D. R. Nielsen and R. Pitchumani, Closed-loop flow control in resin transfer molding using realtime numerical process simulations, Compos. Sci. Technol. 62, 283–298 (2002) https://doi.org/10.1016/S0266-3538(01)00213-5
  2. E. Ruiz, V. Achim, S. Soukane, F. Trochu and J. Bréard, Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites, Compos. Sci. Technol. 66, 475–486 (2006) https://doi.org/10.1016/j.compscitech.2005.06.013
  3. D. Bender, J. Schuster and D. Heider, Flow rate control during vacuum-assisted resin transfer molding (VARTM) processing, Compos. Sci. Technol. 66, 2265–2271 (2006) https://doi.org/10.1016/j.compscitech.2005.12.008
  4. R. J. Johnson and R. Pitchumani, Flow control using localized induction heating in a VARTM process, Compos. Sci. Technol. 67, 669–684 (2007) https://doi.org/10.1016/j.compscitech.2006.04.012
  5. Z. Cai, Simplified mold filling simulation in resin transfer molding, J. Compos. Mater. 26, 2606–2630 (1992) https://doi.org/10.1177/002199839202601708
  6. A. Boccard, W. I. Lee and G. S. Springer, Model for determining the vent locations and the fill time of resin transfer molds, J. Compos. Mater. 29, 306–333 (1995) https://doi.org/10.1177/002199839502900302
  7. J. P. Coulter, B. F. Smith and S. I. Guceri, Experimental and numerical analysis of resin impregnation during the manufacturing of composite materials, in: Proc. Amer. Soc. Compos. 2nd Tech. Conf., pp. 209–217 (1988)
  8. F. Trochu and R. Gauvin, Limitations of a boundary fitted finite difference method for the simulation of the resin transfer molding process, J. Reinf. Plast. Compos. 11, 772–786 (1992) https://doi.org/10.1177/073168449201100704
  9. M. K. Um and W. I. Lee, A study on the mold filing process in resin transfer molding, Polym. Engng Sci. 31, 765–771 (1991)
  10. Y. E. Yoo and W. I. Lee, Numerical simulation of the resin transfer mold filling process using the boundary element method, Polym. Compos. 17, 368–374 (1996) https://doi.org/10.1002/pc.10623
  11. W. B. Young, Resin flow analysis in the consolidation of multi-directional laminated composites, Polym. Compos. 16, 250–257 (1995) https://doi.org/10.1002/pc.750160309
  12. B. Liu, S. Bickerton and S. G. Advani, Modeling and simulation of resin transfer molding (RTM)-Gate control, venting and dry spot prediction, Composites Part A 27A, 135–141 (1996) https://doi.org/10.1016/1359-835X(95)00012-Q
  13. K. M. Pillai and S. G. Advani, Numerical simulation of unsaturated flow in woven fiber preforms during the resin transfer molding process, Polym. Compos. 19, 71–80 (1998) https://doi.org/10.1002/pc.10077
  14. X. Sun, S. Li and L. J. Lee, Mold filling analysis in vacuum-assisted resin transfer molding. Part I: SCRIMP based on a high-permeable medium, Polym. Compos. 19, 807–816 (1998) https://doi.org/10.1002/pc.10155
  15. R. Gauvin and F. Trochu, Key issues in numerical simulation for liquid composite molding processes, Polym. Compos. 19, 233–240 (1998) https://doi.org/10.1002/pc.10095
  16. M. K. Kang and W. I. Lee, A flow front refinement technique for the numerical simulation of the resin-transfer molding process, Compos. Sci. Technol. 59, 1663–1674 (1999)
  17. S. T. Lim and W. I. Lee, An analysis of the three-dimensional resin-transfer mold filling process, Compos. Sci. Technol. 60, 961–975 (2000) https://doi.org/10.1016/S0266-3538(99)00160-8
  18. A. Shojaei, S. R. Ghaffarian and S. M. H. Karimian, Simulation of the three dimensional nonisothermal mold filling process in resin transfer molding, Compos. Sci. Technol. 63, 1931–1948 (2003) https://doi.org/10.1016/S0266-3538(03)00161-1
  19. R. Chen, C. Dong, Z. Liang, C. Chang and B. Wang, Flow modeling and simulation for vacuum assisted resin transfer molding process with the equivalent permeability method, Polym. Compos. 25, 146–164 (2004) https://doi.org/10.1002/pc.20012
  20. L. Joubaud, V. Achim and F. Trochu, Numerical simulation of resin infusion and reinforcement consolidation under flexible cover, Polym. Compos. 26, 417–427 (2005) https://doi.org/10.1002/pc.20069
  21. A. Shojaei, A numerical study of filling process through multilayer preforms in resin injection/compression molding, Compos. Sci. Technol. 66, 1546–1557 (2006) https://doi.org/10.1016/j.compscitech.2005.11.035
  22. C.-Y. Chang, Numerical simulation of the pressure infiltration of fibrous preforms during MMC processing, Adv. Compos. Mater. 15, 287–300 (2006) https://doi.org/10.1163/156855106778392070
  23. M. Kaviany, Principles of Heat Transfer in Porous Media. Springer-Verlag, Germany (1991)
  24. E. B. Becker, G. F. Carey and J. T. Oden, Finite Elements-An Introduction. Prentice-Hall, UK (1981)
  25. M. R. Dusi, W. I. Lee, P. R. Ciriscioli and G. S. Springer, Cure kinetics and viscosity of Fiberite 976 resin, J. Compos. Mater. 27, 243–261 (1987) https://doi.org/10.1177/002199838702100304
  26. D. Rouison, M. Sain and M. Couturier, Resin transfer molding of natural fiber reinforced composites: cure simulation, Compos. Sci. Technol. 64, 629–644 (2004) https://doi.org/10.1016/j.compscitech.2003.06.001
  27. M. Henne, C. Breyer, M. Niedermeier and P. Ermanni, A new kinetic and viscosity model for liquid composite molding simulations in an industrial environment, Polym. Compos. 25, 255–269 (2004) https://doi.org/10.1002/pc.20020
  28. X. A. Aduriz, C. Lupi, N. Boyard, J.-L. Bailleul, D. Leduc, V. Sobotka, N. Lefèvre, X. Chapeleau, C. Boisrobert and D. Delaunay, Quantitative control of RTM6 epoxy resin polymerisation by optical index determination, Compos. Sci. Technol. 67, 3196–3201 (2007) https://doi.org/10.1016/j.compscitech.2007.04.008