DOI QR코드

DOI QR Code

Impact of Air Convection on H3PO4-Activated Biomass for Sequestration of Cu (II) and Cd (II) Ions

  • Girgis, Badie S. (Laboratory of Surface and Catalysis, Physical Chemistry Department, National Research Centre) ;
  • Elkady, Ahmed A. (Food Toxicology and Contaminants Department, National Research Centre) ;
  • Attia, Amina A. (Laboratory of Surface and Catalysis, Physical Chemistry Department, National Research Centre) ;
  • Fathy, Nady A. (Laboratory of Surface and Catalysis, Physical Chemistry Department, National Research Centre) ;
  • Abdel Wahhab, M. A. (Food Toxicology and Contaminants Department, National Research Centre)
  • Received : 2009.04.28
  • Accepted : 2009.06.11
  • Published : 2009.06.30

Abstract

Crushed, depitted peach stones were impregnated activated with 50% $H_3PO_4$ followed by pyrolysis at $500^{\circ}C$. Two activated carbons were produced, one under its own evolved gases during pyrolysis, and the second conducted with air flow throughout the carbonization stage. Physicochemical properties were investigated by several procedures; carbon yield, ash content, elemental chemical analysis, TG/DTG and FTIR spectra. Porosity characteristics were determined by the conventional $N_2$ adsorption at 77 K, and data analyzed to get the major texture parameters of surface area and pore volume. Highly developed activated carbons were obtained, essentially microporous, with slight effect of air on the porous structure. Oxygen was observed to be markedly incorporated in the carbon matrix during the air treatment process. Cation exchange capacity towards Cu (II) and Cd (II) was tested in batch single ion experimental mode, which proved to be slow and a function of carbon dose, time and initial ion concentration. Copper was up taken more favorably than cadmium, under same conditions, and adsorption of both cations was remarkably enhanced as a consequence of the air treatment procedure. Sequestration of the metal ions was explained on basis of the combined effect of the oxygen functional groups and the phosphorous-containing compounds; both contributing to the total surface acidity character.

Keywords

References

  1. Weber, T. "Waste Treatment, Metal finishing", Guide book Directory, 1996, 734.
  2. Davidson's, "Principles and practice of Medicine", Vol. 19, ed. Churchill Livingstone, An Imprint of Elsevier Science Ltd., 2000.
  3. Brown, P. A.; Brown, J. M.; Allen, S. J. Bioresource Technol. 2001, 78, 195. https://doi.org/10.1016/S0960-8524(00)00144-9
  4. Rangel-Mendez, J. R.; Streat, M. Trans. I. Chem. E. 2002, 80, 150.
  5. McKay, G. "Use of Adsorbents for the removal of pollutants from wastewaters", CRC Press, Inc. 1996.
  6. El-Shafey; Cox, M.; Pichugin, A. A.; Appleton, Q. J. Chem. Technol. and Biotechnol. 2002, 77, 429. https://doi.org/10.1002/jctb.577
  7. Chen, J. P.; Yoon, J. T.; Yiacoumi, S. Carbon 2003, 41, 1635. https://doi.org/10.1016/S0008-6223(03)00117-9
  8. Limp, I. M.; Marshall, W. E.; Wartelle, L. H. J. Am. Water Works Association 2004, 97, 95.
  9. Uzun, I.; Güzel, F. Turkey. J. Chem. 2000, 24, 291.
  10. Catherine, F. B.; Zacaria, R.; Krishna, K.; Pierre, L. C. Applied Surf. Sci. 2002, 196, 356. https://doi.org/10.1016/S0169-4332(02)00073-9
  11. Jaonna, K.; Robert, P.; Jacek, P.; Antoni, W. M. Adsorption Sci. and Technol. 2002, 20, 441. https://doi.org/10.1260/026361702320644734
  12. Rivera-Utirlla, J.; Bautista-Toleda, I.; Ferro-Garcia, M. A.; Moreno-Castilla, C. Carbon 2003, 41, 323. https://doi.org/10.1016/S0008-6223(02)00293-2
  13. Mohamed, F. S.; Mostafa, M. R. Egypt J. Chem. 2003, 46, 769.
  14. Saha, B.; Tai, M. H.; Streat, M. Trans. I. Chem. E. 2001, 79B, 345.
  15. El-Sherif, I.; Shouman, M. A.; Girgis, B. S. J. Environ. Sci. (Mans. Univ.) 2007, 33, 199.
  16. Philip, C. A.; Girgis, B. S. J. Chem. Technol. and Biotechnol. 1996, 67, 248. https://doi.org/10.1002/(SICI)1097-4660(199611)67:3<248::AID-JCTB557>3.0.CO;2-1
  17. Jagtoyen, M.; Derbyshire, F. Carbon 1998, 36, 1085. https://doi.org/10.1016/S0008-6223(98)00082-7
  18. Benaddi, H.; Legras, D.; Rouzaud, J. N.; Beguin, F. Carbon 1998, 36, 306. https://doi.org/10.1016/S0008-6223(98)80123-1
  19. Girgis, B. S.; Ishak, M. F. Material Lett. 1999, 39, 107.
  20. Dastgheib, S. A.; Rockstraw, D. A. Carbon 2001, 39, 1849. https://doi.org/10.1016/S0008-6223(00)00315-8
  21. Girgis, B. S.; Yunis, S. S.; Soliman, A. N. Material Lett. 2002, 57, 164. https://doi.org/10.1016/S0167-577X(02)00724-3
  22. Girgis, B. S.; El-Hendawy, A. N. A. Microp. and Mesop. Materials 2002, 52, 105. https://doi.org/10.1016/S1387-1811(01)00481-4
  23. Suarez-Garcia, F.; Martinez-Alonso, A.; Tascon, J. M. D. J. Anal. Appl. Pyrolysis 2002, 63, 283. https://doi.org/10.1016/S0165-2370(01)00160-7
  24. Attia, A. A.; Girgis, B. S.; Khedr, S. J. Chem. Technol. and Biotechnol. 2003, 78, 611. https://doi.org/10.1002/jctb.743
  25. Strelko, V. Jr; Malik, J. D. J colloidal& Int Sci. 2002, 250, 213. https://doi.org/10.1006/jcis.2002.8313
  26. Attia, A. A.; Girgis, B. S.; Tawfik, N. A. F. Carbon Sci. 2005, 6, 89.
  27. Johns, M. M.; Marshall, W. E.; Toles, C. A. J. Chem. Technol. Biotechnol. 1999, 74, 1037. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1037::AID-JCTB160>3.0.CO;2-O
  28. Toles, C. A.; Marshall, W. E.; Johns, M. M. Carbon 1999, 37, 1207. https://doi.org/10.1016/S0008-6223(98)00315-7
  29. Toles, C. A.; Marshall, W.; Johns, M. M.; Wartelle, L. H; Aloone, A. Mc. Biores. Technology 2000, 71, 87. https://doi.org/10.1016/S0960-8524(99)00029-2
  30. Basso, M. C.; Corella, E. G.; Cukierman, A. L. Ind. Eng. Chem. Res. 2002, 41, 180. https://doi.org/10.1021/ie010664x
  31. Farajzadeh, M. A.; Monji, A. B. Separation and Purification Technol. 2004, 38, 197. https://doi.org/10.1016/j.seppur.2003.11.005
  32. Sellez-Perez, M. J.; Martin-Martinez, J. M. J. Chem. Soc. Faraday Trans. 1991, 87, 1237. https://doi.org/10.1039/ft9918701237
  33. Swiatkowski, A.; Pakula, M.; Biniak, S.; Walczyk, M. Carbon 2004, 42, 3057. https://doi.org/10.1016/j.carbon.2004.06.043
  34. Puizy, A. M.; Poddubnaya, O. I. Mater. Sci. Forum 1999, 308-311, 908. https://doi.org/10.4028/www.scientific.net/MSF.308-311.908
  35. Adib, F.; Bagreev, A.; Bandosz, T. J. J. Coll. Interface Sci. 1999, 214, 407. https://doi.org/10.1006/jcis.1999.6200
  36. Girgis, B. S.; Attia, A. A.; Fathy, N. A. Coll. Surfaces 2007, 299A, 79.
  37. Malik, D. J.; Strelko, V. S.; Streat, Jr., M.; Puizy, A. M. Water Res. 2002, 36, 1527. https://doi.org/10.1016/S0043-1354(01)00348-7
  38. Puizy, A. M.; Poddubnaya, O. I.; Martinez-Alonso, A.; Suarez-Garcia, F.; Tascon, J. M. D. Carbon 2002, 41, 1493.
  39. Puizy, A. M.; Poddubnaya, O. I.; Zaitsev, V. N.; Konoplitska, O. P. Appl. Surf. Sci. 2004, 221, 421. https://doi.org/10.1016/S0169-4332(03)00956-5
  40. Puizy, A. M.; Poddubnaya, O. I.; Martinez-Alonso, A.; Suarez-Garcia, F.; Tascon, J. M. D. Carbon 2005, 43, 2857. https://doi.org/10.1016/j.carbon.2005.06.014
  41. Yue, Z.; Mangun, C. L.; Economy, J. Carbon 2004, 42, 1973. https://doi.org/10.1016/j.carbon.2004.03.030
  42. Guo, Y.; Rockstraw D. A. Carbon 2006, 44, 1464. https://doi.org/10.1016/j.carbon.2005.12.002
  43. Badel, S; Kurniawan, T. A. J. Hazard. Materials 2003, 97, 219. https://doi.org/10.1016/S0304-3894(02)00263-7
  44. Ho, Y. S. Water Res. 2003, 37, 2323. https://doi.org/10.1016/S0043-1354(03)00002-2
  45. Papandreou, A.; Stoarnaras, C. J.; Panias, D. J. Hazard. Materials 2007, 148, 538. https://doi.org/10.1016/j.jhazmat.2007.03.020
  46. Attia, A. A.; Shouman, M. A.; Khedr, S. A.; Th. El-Nabarawy Carbon Sci. 2006, 7, 249.
  47. Bradl, H. B. J. Colloid Interface Sci. 2004, 277, 1. https://doi.org/10.1016/j.jcis.2004.04.005

Cited by

  1. Equilibrium Removal of Pb (II) Ions from Aqueous Solution onto Oxidized-KOH-Activated Carbons vol.12, pp.1, 2011, https://doi.org/10.5714/CL.2011.12.1.001
  2. Development of Porosity and Copper(II) Ion Adsorption Capacity by Activated Nano-Carbon Xerogels in Relation to Treatment Schemes vol.29, pp.10, 2011, https://doi.org/10.1260/0263-6174.29.10.943
  3. Application of Isotherm and Kinetic Models for the Removal of Lead Ions from Aqueous Solutions vol.139, pp.3, 2013, https://doi.org/10.1061/(ASCE)EE.1943-7870.0000646
  4. Utilization of activated carbon prepared from agricultural waste for the removal of organophosphorous pesticide from aqueous media vol.51, pp.37-39, 2013, https://doi.org/10.1080/19443994.2013.792137
  5. Adsorption of heavy metals and methylene blue from aqueous solution with citric acid modified peach stone vol.53, pp.11, 2018, https://doi.org/10.1080/01496395.2018.1439064