DOI QR코드

DOI QR Code

Preparation and Photocatalytic Activity of Multi-elements Codoped TiO2 Made by Sol-gel Method and Microwave Treatment

  • Kim, Sang-Jin (Department of Fine Chemical Engineering & Applied Chemistry Chungnam National University) ;
  • Yun, Seok-Min (Department of Fine Chemical Engineering & Applied Chemistry Chungnam National University) ;
  • Kim, Hyuk (Hanil Green Tech Co., LTD) ;
  • Kim, Jong-Gyu (Hanil Green Tech Co., LTD) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering & Applied Chemistry Chungnam National University)
  • Received : 2009.04.28
  • Accepted : 2009.06.04
  • Published : 2009.06.30

Abstract

Multi-elements doped $TiO_2$ was prepared as a new photocatalyst in order to decrease the band gap of $TiO_2$ by sol-gel process which can provide the large active sites of $TiO_2$. Multi-elements were doped by using a single precursor, tetraethylammonium tetrafluoroborate (TEATFB). By the benefit of large specific surface area of $TiO_2$ prepared by sol-gel process, catalysts showed initial fast removal of dye. The photoactivity showed that the doped catalysts significantly promote the light reactivity than undoped $TiO_2$. The commendable photoactivity of prepared catalysts is predominantly attributable to the doping of anions which may reduce the band gap.

Keywords

References

  1. Traversa, E.; Vona, M. L. D.; Nunziante, P.; Licoccia, S.; Sasaki, T.; Koshizaki, N. J. Sol-Gel Sci. Technol., 2000, 19, 733. https://doi.org/10.1023/A:1008787412057
  2. Suarez-Parra, R.; Hernandez-Perez, I.; Lopez-Ayala, S.; Rincon, M. E.; Roldan-Ahumada, M. C. Solar Energy Mater. Solar Cells, 2003, 76, 189. https://doi.org/10.1016/S0927-0248(02)00346-X
  3. Li, D.; Haneda, H. Photochem. Photobiol. Chem., 2003, 160, 203. https://doi.org/10.1016/S1010-6030(03)00212-0
  4. Takeda, N.; Iwata, N.; Torimoto, T.; Yoneyama, H. J. Catal., 1998, 177, 240. https://doi.org/10.1006/jcat.1998.2117
  5. Banfied, J. F.; Veblen, D. R. Am. Mineral., 1992, 44, 545.
  6. Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem., 2004, 32, 33. https://doi.org/10.1016/j.progsolidstchem.2004.08.001
  7. Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. J. Catal., 2001, 203, 82. https://doi.org/10.1006/jcat.2001.3316
  8. Bickley, R. I.; Gonzalez-Carreno, T.; Lees, J.S.; Palmisano, L.; Tilley, R. J. D. J. Solid State Chem., 1991, 92, 178. https://doi.org/10.1016/0022-4596(91)90255-G
  9. Inagaki, M.; Nakazawa, Y.; Hirano, M.; Kobayashi, Y.; Toyoda, M. Int. J. Inorg. Mater., 2001, 3, 809. https://doi.org/10.1016/S1466-6049(01)00176-3
  10. Toyoda, M.; Nanbu, Y.; Nakazawa, Y.; Hirano, M.; Inagaki, M. Appl. Catal. B: Environ., 2004, 49, 227. https://doi.org/10.1016/j.apcatb.2003.12.012
  11. Chiou, C. H.; Juang, R. S. Journal of Hazard. Mater., 2007, 149, 1. https://doi.org/10.1016/j.jhazmat.2007.03.035
  12. Yamashita, H.; Honda, M.; Harada, M.; Ichihashi, Y.; Anpo, M.; Hirao, T.; Itoh, N.; Iwamoto, N. J. Phys. Chem. B, 1998, 102, 10707. https://doi.org/10.1021/jp982835q
  13. Palanivelu, K.; Im, J. S.; Lee, Y. S. Carbon Science, 2007, 8, 214.
  14. Qiu, X.; Burda, C. Chem. Phys., 2007, 1, 339.
  15. Xu, T. H.; Song, C. L.; Liu, Y.; Han, G. R. J. Zhejiang Univ. Science B, 2006, 7, 299. https://doi.org/10.1631/jzus.2006.B0299
  16. Gombac, V.; De Rogatis, L.; Gasparotto, A.; Vicario, G.; Montini, T.; Barreca, D.; Balducci, G.; Fornasiero, P.; Tondello, E.; Graziani, M.; Chem. Phys., 2007, 339, 111. https://doi.org/10.1016/j.chemphys.2007.05.024
  17. Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater., 2005, 17, 2588. https://doi.org/10.1021/cm049100k
  18. Yu, J.; Zhao, X.; Wang, G. Mater. Chem. Phys., 2001, 68, 253. https://doi.org/10.1016/S0254-0584(00)00364-3
  19. Park, H.; Choi, W. J. Phys. Chem. B, 2004, 108, 4086. https://doi.org/10.1021/jp036735i
  20. Wang, H.; Lewis, J. P. J. Phys. Condens Matter, 2005, 17, 209. https://doi.org/10.1088/0953-8984/17/21/L01
  21. Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater., 2005, 17, 2596. https://doi.org/10.1021/cm049099p
  22. Balek, V.; Li, D.; Subrt, J.; Vecernikova, E.; Hishita, S.; Mitsuhashi, T.; Haneda, H. J. Phys. Chem. of Solids, 2007, 68, 770. https://doi.org/10.1016/j.jpcs.2007.01.028
  23. Chen, D.; Jiang, Z.; Geng, J.; Wang, Q.; Yang, D. Ind. Eng. Chem. Res., 2007, 46, 2741. https://doi.org/10.1021/ie061491k
  24. Reddy, K. M.; Baruwati, B.; Jayalakshmi, M.; Rao, M. M.; Manorama, S. V. J. Solid State Chem., 2005, 178, 3352. https://doi.org/10.1016/j.jssc.2005.08.016
  25. Lee, K. R.; Kim, S.J.; Song, J. S.; Lee, J.H.; Chung, Y. J.; Park, S. Am. Ceram. Soc., 2002, 85, 341. https://doi.org/10.1111/j.1151-2916.2002.tb00094.x
  26. Gao, L.; Zhang, Q. Scripta Mater., 2001, 44, 1195. https://doi.org/10.1016/S1359-6462(01)00681-9
  27. Sze, S.M. "Physics of Semiconductor Device", John Wiley and Sons, New York, 1981.
  28. Cunningham, J., Sedlak, P. "Photocatalytic Purification and Treatment of Water and Air", 1993.
  29. Guillard, C.; Lachheb, H.; Houas, A.; Ksibi, M.; Elaloui, E.; Herrmann, J. M. J. Photochem. Photobiol. A: Chem., 2003, 158, 27. https://doi.org/10.1016/S1010-6030(03)00016-9
  30. Piscopo, A.; Robert, D.; Weber, J.V. Appl. Catal. B: Environ., 2001, 35, 117. https://doi.org/10.1016/S0926-3373(01)00244-2
  31. Ohtani, B.; Ogawa, Y.; Nishimoto, S. J.Phys.Chem., 1997, 101, 3746. https://doi.org/10.1021/jp9706745
  32. Pelizzetti, E. Sol. Energy Mater. Sol. Cells, 1995, 38, 453. https://doi.org/10.1016/0927-0248(94)00237-1
  33. Saha, N. C.; Tomkins, H. G. J. Appl. Phys., 1992, 72, 3072. https://doi.org/10.1063/1.351465
  34. Sakthivel, S.; Kisch, H. Chem. Phys. Chem., 2003, 4, 487. https://doi.org/10.1002/cphc.200200554
  35. Chen, D.; Yang, D.; Wang, Q.; Jiang, Z. Ind. Eng. Chem. Res., 2006, 45, 4110. https://doi.org/10.1021/ie0600902
  36. Swanepoel, R. J. Phys. E. J. Sci. Instrum., 1983, 16, 1214. https://doi.org/10.1088/0022-3735/16/12/023
  37. Giannakopoulou, T.; Todorova, N.; Trapalis, C.; Vaimakis, T. Mater. Lett., 2007, 61, 4474. https://doi.org/10.1016/j.matlet.2007.02.056
  38. Yamaki, T.; Shumita, T.; Yamamoto, S. J. Mater. Sci. Lett., 2002, 21, 33. https://doi.org/10.1023/A:1014282225859
  39. Izumi, F. Bull. Chem. Soc. Jpn., 1978, 51, 1771. https://doi.org/10.1246/bcsj.51.1771
  40. Emeline, A. V.; Kataeva, G. V.; Ryabchuk, V. K.; Serpone, N. J. Phys. Chem. B, 1999, 103, 1316. https://doi.org/10.1021/jp984661i
  41. Volodin, A. M. Catal. Today, 2000, 58, 103. https://doi.org/10.1016/S0920-5861(00)00245-5
  42. Sakthivel, S.; Kisch, H. Angew. Chem. Int. Ed., 2003, 42, 4908. https://doi.org/10.1002/anie.200351577

Cited by

  1. -Activated Carbon Complex Fiber as Photocatalyst vol.11, pp.1, 2010, https://doi.org/10.5714/CL.2010.11.1.028