DOI QR코드

DOI QR Code

Electrical and Mechanical Properties of Graphite Nanosheet/Carbon Nanotubes-filled Epoxy Nanocomposites

  • Received : 2009.11.22
  • Accepted : 2009.12.13
  • Published : 2009.12.30

Abstract

In this work, the effect of co-carbon fillers on the electrical and mechanical properties of epoxy nanocomposites was investigated. The graphite nanosheets (GNs) and multi-walled carbon nanotubes (MWNTs) were used as co-carbon fillers. The results showed that the electrical conductivity of the epoxy nanocomposites showed a considerable increase upon an addition of MWNTs when GNs were fixed at 2 wt.%. This indicated that low content GNs formed the bulk conductive network and then MWNTs added were intercalated between the GN layers, resulted in the formation of additional conductive pathway. Furthermore, the flexural strength of the epoxy nanocomposites was enhanced with increasing the MWNT content. It was probably attributed to the flexible MWNTs compared with rigid GNs, resulted in the enhancement of the mechanical properties.

Keywords

References

  1. Zheng, W.; Wong, S. C.; Sue, H. J. Polymer 2002, 43, 6767. https://doi.org/10.1016/S0032-3861(02)00599-2
  2. Zhao, Y. F.; Xiao, M.; Wang, S. J.; Ge, X. C.; Meng, Y. Z. Comp. Sci. Tech. 2007, 67, 2528. https://doi.org/10.1016/j.compscitech.2006.12.009
  3. Celzard, A.; McRae, E.; Mareche, J. F.; Furdin, G.; Sundqvist, B. J. Appl. Phys. 1998, 83, 1410. https://doi.org/10.1063/1.366904
  4. Weng, W.; Chen, G.; Wu, D. Polymer 2005, 46, 6250. https://doi.org/10.1016/j.polymer.2005.05.071
  5. Celzard, A.; March, J. F.; Furdin, G.; Puricelli, S. J. Phys. D:Appl. Phys. 2000, 33, 3094. https://doi.org/10.1088/0022-3727/33/23/313
  6. Park, S. J. "Interfacial Forces and Fields: Theory and Applications", ed. By J. P. Hsu, Marcel Dekker, New York, 1999, chapter 9.
  7. Chen, G. H.; Weng, W.G.; Wu, D. J.; Wu, C. L. Eur. Polym. J. 2003, 39, 2329. https://doi.org/10.1016/j.eurpolymj.2003.08.005
  8. Uhl Fawn, M.; Yau, Q.; Nakajima, H.; Manias, E.; Wilkie, C. A. Polym. Degrad. Stabil. 2005, 89, 70. https://doi.org/10.1016/j.polymdegradstab.2005.01.004
  9. Du, X. S.; Xiao, M.; Meng, Y. Z.; Hay, A. S. Polymer 2004, 45, 6713. https://doi.org/10.1016/j.polymer.2004.07.026
  10. Chen, G.; Lu, J.; Wu, D. Mater. Chem. Phys. 2007, 104, 240. https://doi.org/10.1016/j.matchemphys.2007.01.011
  11. Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Comp. Sci. Tech. 2007, 67, 2045. https://doi.org/10.1016/j.compscitech.2006.11.014
  12. Lu, W.; Lin, H.; Wu, D.; Chen, G. Polymer 2006, 47, 4440. https://doi.org/10.1016/j.polymer.2006.03.107
  13. Yu, A. Y.; Ramesh, P.; Sun, X.; Bekyarova, E.; Itkis, E.; Haddon, R. C. Adv. Mater. 2008, 20, 4740. https://doi.org/10.1002/adma.200800401
  14. Yu, A.; Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C. J. Phys. Chem. C 2007, 111, 7565. https://doi.org/10.1021/jp071761s
  15. Shenogin, S.; Xue, L. P.; Ozisik, R.; Keblinski, P., Cahill, D. G. J. Appl. Phys. 2004, 95, 8136. https://doi.org/10.1063/1.1736328
  16. Martin, C. A.; Sandler, J. K. W.; Shaffer, M. S. P.; Schwarz, M. K.; Bauhofer, W.; Schulte, K.; Windle, A. H. Comp. Sci. Tech. 2004, 64, 2309. https://doi.org/10.1016/j.compscitech.2004.01.025
  17. Li, J.; Wong, P. S.; Kim, J. K. Mater. Sci. Eng. A 2008, 483, 660. https://doi.org/10.1016/j.msea.2006.08.145
  18. Heo, S. I.; Oh, K. S.; Yun, J. C.; Jung, S. H.; Yang, Y. C.; Han, K. S. J. Power Sources 2007, 171, 396. https://doi.org/10.1016/j.jpowsour.2007.05.110
  19. Seo, M. K.; Lee, J. R.; Park, S. J. Mater. Sci. Eng. A 2005, 404, 79. https://doi.org/10.1016/j.msea.2005.05.065

Cited by

  1. Influence of Glycidyl Methacrylate Grafted Multi-walled Carbon Nanotubes on Viscoelastic Behaviors of Polypropylene Nanocomposites vol.11, pp.4, 2010, https://doi.org/10.5714/CL.2010.11.4.311
  2. Thermal Insulation Properties of Epoxy/Mesoporous Carbon Composites vol.12, pp.1, 2011, https://doi.org/10.5714/CL.2011.12.1.053
  3. Carbon Nanomaterial–Reinforced Epoxy Composites: A Review vol.57, pp.1, 2018, https://doi.org/10.1080/03602559.2017.1298802
  4. Effect of reduced graphene oxide-carbon nanotubes hybrid nanofillers in mechanical properties of polymer nanocomposites vol.338, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/338/1/012055
  5. Investigation of electrical, mechanical, and thermal properties of functionalized multiwalled carbon nanotubes-reduced graphene Oxide/PMMA hybrid nanocomposites pp.00323888, 2019, https://doi.org/10.1002/pen.25084