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스텝응답을 이용한 3매개변수 모델의 식별 

Identification of Three-Parameter Models from Step Response 
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Abstract: This paper provides an identification method for three-parameter models i.e. first order with dead time models and second 

order with dead time models. The proposed identification method is based on step response and can be easily implemented using 

digital microprocessors. The proposed method first identifies the order of the plant i.e. first order or second order from the behavior 

of the plant with constant input. After the order of the plant is determined, a test step input is applied to the system and the three 

parameters of the plant are obtained from the corresponding response of the plant. The output of the plant need not to be zero when 

the test signal is applied. The efficacy of proposed algorithms is verified through simulation and experiment. 
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I. INTRODUCTION 

Process dynamics can be estimated based on the measurement 

of the process responses obtained from the test input signals such 

as pulse, step, ramp and other deterministic signals. Among the 

various test signals, step response has received a particular 

attention due to its simplicity and easy implementation [1]. It is 

widely used in industrial processes for tuning the PID controllers; 

e.g. Ziegler-Nichols step response method [2,3]. Astrom and 

Haggluned [1] demonstrated the identification of plants of 

first/second-order with time-delay using a graphical method to 

identify the plant parameters. Some other graphical methods are 

proposed using step responses [4,5] and frequency responses [4]. 

However, these graphical methods would be inaccurate, 

especially in the presence of noise. Furthermore, they require that 

the initial output of the plant and its initial derivatives are zero 

before the application of test signals. 

An identification method which takes nonzero initial conditions 

into account for nth order plant was reported by Mathew and 

Fairman [6] based on impulse response and they did not consider 

dead-time which is unavoidable in industrial processes. Other 

identification methods [7-11] were developed for models of first 

order with dead time. They require that the output and its 

derivative should be zero before the application of step signal. 

Another popular approach was based on feedback test [11-13] to 

identify the parameters of models with various orders. But in 

these methods iteration was included, which prolongs the time of 

identification of the parameters.  

In this paper, a simple system identification method based on 

the step response is proposed for the first/second order plant with 

a time delay and it does not require iteration. The step input can be 

applied to a plant for identification while its output is non-zero. 

The proposed method is an extension of the parameter 

identification part of the auto-tuning of PID/PIDA controllers 

based on step-response proposed in [14]. Two different types of 

plant models will be considered. The identification algorithms for 

each types of plant are slightly different. So, we also provide an 

algorithm to determine which plant model will be assumed. It will 

be easy to implement the proposed method using microprocessor. 

We described how to implement the proposed algorithm using 

Stateflow of SIMULINK and proposed experiment results which 

apply the proposed algorithm to the heater of hot runner. 

 

II. PROCESS MODELS AND THE IDEA OF 

PARAMETER IDENTIFICATION 

We consider two representative types of system models, which 

are represented by the transfer-function G(s) as: 
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K
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where m=0 or 1. The systems have dead time and are 

characterized by three parameters, K, L(L>0) and T(T>0), where 

K is the static process gain, L is the dead time and T is the time 

constant. We will consider the cases in which m=0 and m=1 

separately. 

 

1. Model without integrator case (m=0) 

Let’s assume temporarily that the dead time is zero i.e. L=0. 

Then the Laplace transform of the step response of system (1) 

with step input size 'a' can be written as: 

 ( ) .
( 1)

aK
Y s

s Ts
=

+

 (2) 

After simple manipulations on (2), the following relation is 

obtained, 

 2( ) ( ) .Ts s Y s aK+ =  (3) 

Note that the transfer function and the output (2) (or (3)) are 
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case of non-zero initial conditions i.e. 
0
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0
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can be rewritten by using the initial value theorem of the Laplace 

transform, as follows: 

 
'

0 0 0( ) .
( 1)

aK y Tsy Ty
Y s

s Ts

+ + +
=

+

 (4) 

The partial fraction expansion of equation (4) is, 
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Employing the inverse Laplace transform of (5), the output in 

time domain is obtained as, 
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As time 't' increases, the e-t/T becomes zero and (7) reduces to, 

 
1
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From (6) and (8), the process gain can be found as, 
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where ( )y ∞  represents the ( )y t  for some t such that /| |t Te−  

is very small. Here the T is an unknown parameter. So, in order to 

find out the gain K, we assume that 
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equation (9) becomes, 
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On the other hand, taking derivative of ( ),y t  the equation (7) 

becomes, 
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by making use of (6). Here we also assume that '

0
0.y =  

From (11) we can see that '( )y t  get the maximum value 

when t=0. On the other hand when t=T the value of /t T
e
−  

becomes 0.367. Parameter, T is obtained from the time difference 

between the time index of the maximum value of '( )y t  and that 

of 36.7% decay from the maximum of ' ( ).y t  The relation 

becomes, 

 ' '

max
( ) 0.367.y T y= ×  (12) 

Now let’s consider nonzero time delay i.e. 0.L ≠  It is easy to 

see that (10) still hold true and '( )y t  of (11) will take the 

maximum at t=L. Thus the time delay L can be estimated as the 

consumed time to reach the maximum value of '( ).y t  From the 

equation (12) the time delay can be defined as, 

 
max

,L t=  (13) 
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 represents the elapsed time to reach the maximum 
'( )y t  from the application of step signal , under the condition 
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2. Model with integrator case (m=1) 

Let’s assume temporarily that the dead time is zero i.e. L=0. 

Then the Laplace transform of the step response of system (1) 

with amplitude 'a' of input step can be written as: 
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After manipulations on (14), the following relation is obtained, 

 3 2( ) ( ) .Ts s Y s aK+ =  (15) 

Note that the transfer function and the output (14) (or (15)) are 
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The partial fraction expansion of equation (16) is, 
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Employing the inverse Laplace transform of (17), the output in 

time domain is obtained as, 
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by taking derivative of y(t), the equation (19) becomes, 
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As time ‘t’ increases, the e-t/T becomes zero and (20) reduces to, 
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1
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From (18) and (21), the process gain can be found as, 
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On the other hand, by taking derivative of '( ),y t  the equation 

(20) becomes, 
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by making use of (18), Here we also assume that ''

0
0.y =  

From (24) we can see that ''( )y t  get maximum value when 

t=0, on the other hand when t=T, the value of /t T
e
−  becomes 

0.367. Parameter, T is obtained from the time difference between 

the time indexes of the maximum value of ''( )y t  and that of 

36.7% decay value from the maximum of ''( ).y t  The relation 

becomes, 

 '' ''

max
( ) 0.367.y T y= ×  (25) 

Now let’s consider nonzero time delay i.e. 0.L ≠  It is easy to 

see that (23) still hold true and ''( )y t  of (25) will take maximum 

at t=L. Thus the time delay L can be estimated as the consumed 

time to reach maximum value of the ''( ).y t  From the equation 

(25) the time delay can be define as 
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III. PARAMETER IDENTIFICATION ALGORITHM 

The identification algorithm is total in seven steps for both first 

and second order models, are implementable by using digital 

microprocessor. However, identification methods for the system 

parameters are slightly different with respect to plant order. By 

using the low-pass filter the noises and disturbance are reduced 

from the plant output, then applying the parameter identification 

algorithm. Since in real plant, it is hard to detect y'(t) and y''(t) 

equal to zero, thresholds δ1 and δ2 in the algorithm are considered 

for appropriate identification. Steps of the parameter identification 

algorithm are given below,  

1. Parameters identification algorithm for m=0. 

Para_Id_Algorithm_0: 

Step 1: At non-zero initial position based on input signal, u=0 

of the system, wait and observes the output become |y'(t)|< δ1 

(0<δ1<<1). 

Step 2: When step 1 satisfied, set time t=0 and save the value 

of y(0), then apply step input of the system with step size 'a'.  

Step 3: When y'(t)> δ1, determine the time t, by using equation 

(13) the measured time become the parameter L. 

Step 4: At y'(t) have maximum value, save time as tmax and the 

output value of y'(tmax). 

Step 5: According to the equation (12) measure 36.7% decayed 

value of y'(t) from the time tmax (step 4), this time range(t~tmax) is 

represent the parameter T. 

Step 6: |y'(t)| become decreases in time, measure the value of 

the y(t) when time goes |y'(t)|<δ2, (δ1<δ2<<1), from step 2 we got 

value of y(0) and the step input size 'a'. Now use equation (10) to 

determine the parameter K. 

Step 7: Stop the step input, the identification of the parameters 

are completed. 

 

2. Parameters identification algorithm for m=1. 

Para_Id_Algorithm_1: 

Step 1: At non-zero initial position based on input u=0 of the 

system, wait and observes the output become |y''(t)|< δ1, 

(0<δ1<<1). 

Step 2: When step1 satisfied, set time t=0 and save the value of 

y'(0), then apply step input of the system with step size 'a'.  

Step 3: When y''(t)> δ1, determine the time t, by using equation 

(26) the measured time become the parameter L. 

Step 4: At y''(t) have maximum value, save time as tmax and the 

output value of y''(tmax). 

Step 5: According to the equation (25) measure 36.7% decayed 

value of y''(t) from the time tmax (step 4), this time range(t~tmax) 

represent the parameter T. 

Step 6: |y''(t)| become decreases in time, measure the value of 

y'(t) when time goes |y''(t)|<δ2, (δ1<δ2<<1), from step 2 we got 

y'(0) and step input size 'a'. Now use equation (23) to determine 

the parameter K. 

Step 7: Stop the step input, the identification of the parameters 

are completed. 

The above identification algorithms Para_Id_Algorithm_0 and 

Para_Id_Algorithm_1 are used for identification of the plant 

parameters. In the first order with dead time (FODT) model, the 

parameters are identified by using the equations (10), (12) and 

(13). In order to apply system identification algorithm, one of the 

necessary condition is '( ) 0.y t =  On the other hand, second 

order integral model with dead time (SODT) the parameters are 

identified based on equations (23), (25) and (26) and ''( ) 0,y t =  

must be satisfied. Low pass filter is used to remove the contained 

noise at output of y(t), y'(t) and y''(t). 

 

3. Plant order identification algorithm 

For non-zero initial state plant, the plant order identification 

algorithm consists of three steps. The steps are given below, 

Order_Id_Algorithm: 
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Step 1: Generate and apply a constant input as small as 

possible to the system. 

Step 2: Wait until the second derivative of the output becomes 

sufficiently small i.e. 

 |y''(t)|≤ δ1, (27) 

for all t≥t1≥0, where δ1 is a small positive value and t1 is the time 

from which (27) satisfied. 

Step 3: After t1, wait further for some predetermined period T 

to see that the first derivative of the output decrease to zero or not. 

 if |y'(t1+T)|<δ2, 

we set the order of the plant as 1 i.e. M=1, other wise we set M=2. 

By applying plant order identification algorithm, we will get the 

order of the target plant, which give the value of m, to determine 

the algorithm Para_Id_Algorithm_0 in 3.1 or Para_Id_Algorithm_1 

in 3.2 should be applied. Note that the step 1 of 

Para_Id_Algorithm_0 and Para_Id_Algorithm_1 can be replace 

by Orer_Id_Algorithm. 

 

IV. IMPLEMENTATION OF THE ALGORITHM USING 

STATEFLOW OF MATLAB SIMULINK. 

As it can be shown in Fig. 1, we did simulation studies using 

MATLAB SIMULINK. The step input signal is generated by step 

function block. The process plant is represented by continuous 

time transfer function blocks. Time delay is defined as a 

continuous transport delay function. The generated disturbance 

noise is denoted by random number (±n). The outputs are 

observed by using the workspace block. The identification 

algorithm proposed in section III is implemented as a subsystem 

block, which contains two Stateflow chart blocks, i.e. 

conditioning block and identification block. The Stateflow chart is 

a tool of MATLAB SIMULINK, which is widely used in model 

based development of embedded systems. The Stateflow consists 

of ‘state’ and ‘transition’ and they can be transformed into C-code 

easily for micro-processor implementation. 

1. Conditioning block. 

Conditioning block shown in Fig. 1(b), has one input signal y 

and three outputs signals fy, fdy and fddy, where y is output signal 

of the plant. We considered an infinite impulse response (IIR) 

Butterworth filter to reduce the unwanted disturbance and noise 

signals. The transfer function of the filer is given by: 

 
1 2

0 1 2

1 2

0 1 2

( ) ( ) ( ) ( )
b b z b z

FY z H z X z Y z
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− −
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This corresponds to a time domain recurrence relation: 

 
1 2 0
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1 2

1
( ) { ( 1) ( 2) ( )
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 (28) 

The a0, a1, a2, b0, b1 and b2 are the coefficients of the filter. 

The fy, fdy and fddy signals represent the filtered value of y, dy 

and ddy, where dy and ddy are computed as ( )dy k =  

( ) ( 1)
,

fy k fy k

T

− −

 and 
( ) ( 1)

( )
fdy k fdy k

ddy k
T

− −

=  respect-

ively, where T denotes the sampling time. Fig. 2 shows the detail 

of conditioning block which carries out the computation of fy, fdy 

and fddy signals. 

At every sampling time the conditioning state shown in Fig. 2, 

is executed to update data. The coefficients of the filter (28) were 

obtained by using ‘butter’ command at MATLAB command 

prompt with cutoff frequency 0.01Hz. 

 

2. Identification block 

The Identification block has three inputs and one output signal 

as shown in Fig. 1(b). They can be divided into four parts to 

describe the flow of implementations. The four parts of the 

identification algorithm are described below:  

 

2.1 Identification of the plant order 

While step 1 of the Order_Id_Algorithm is carried out by 

constant block of Fig. 1(a). Step 2 and 3 of the Order_Id_Algorithm 

are implemented by using the ‘transition’ as Fig. 3. The 

‘transition’ can be translated into C-code easily using an if clause.  

When the variable State is ‘1’ the procedure is in the step 2 of 

Order_Id_Algorithm, here the condition |y''(t)|≤ δ1 is checked. 

State==2 means the procedure is in the step 3 of 

Order_Id_Algorithm. If the State==3, the order of the plant is 

determined and make braches to Para_Id_Algorithm_0 or 

Para_Id_Algorithm_1  

 

(a) Identification algorithm. 

(b) Identification algorithm subsystem block. 

그림 1. 시스템식별을 위한 SIMULINK 다이어그램. 

Fig.  1. SIMULINK diagram for system identification algorithm. 

그림 2. 컨디셔닝 블록의 상태. 

Fig.  2. State of conditioning block. 
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그림 3. 플랜트 식별. 

Fig.  3. Identification order of the plant. 

 

 

그림 4. 파라메터 식별알고리즘 (m=0). 

Fig.  4. Parameters identification algorithm (m=0). 

 

The flow of transition segments select the parameters 

identification algorithm based on identified order i.e., M=1 or 

M=2. . If M==1 the step 2 of Para_Id_Algorithm_0 otherwise if 

M==2 the step 2 of Para_Id_Algorithm_1 is proceed.  

 

2.2 Parameters identification algorithm for m=0. 

If State==11 in Fig 4, the procedure is in the step 3 of 

Para_Id_Algorithm_0 algorithm. When State==12, the procedure 

is in the steps 4 and 5 of Para_Id_Algorithm_0 algorithm. And 

State==13 means the procedure is in the step 6 of 

Para_Id_Algorithm_0 algorithms. 

 

2.3 Parameters identification algorithm for m=1. 

If M=2 is selected at State==3 junction of Fig. 3, the execution 

flow comes to State==21, the procedure is in the step 3 of 

Para_Id_Algorithm_1 algorithm. 

Now in State==22, the procedure is in the steps 4 and 5 of 

Para_Id_Algorithm_0 algorithm. The State variable ‘23’ means 

the procedure is in the step 6 of Para_Id_Algorithm_0 algorithm. 

 

2.4 Ending of the algorithm 

If State==44 in Fig. 6, the procedure set sw=1, otherwise the 

procedure will set sw=0, finally the transition will go to the last 

junction. When the transition executes the last junction which 

contains no outgoing transition segments, chart execution is 

complete. 

When the state is 44, it means that the parameter identification 

is finished. 

 

그림 5. 파라메터식별 알고리즘(m=1). 

Fig.  5. Parameters identification algorithm (m=1). 

 

 

그림 6. 스테이트 플로우 챠트 종료. 

Fig.  6. Ending of the Stateflow chart. 

 

V. SIMULATION RESULTS 

We considered five different set of parameters for each of FODT 

and SODT models. The simulation results of Order_Id_Algorithm, 

Para_Id_Algorithm_0 and Para_Id_Algorithm_1 algorithms are 

shown below. 

 

1. Test result for plant order identification 

The proposed order identification algorithm identified the order 

of FODT and SODT model plants correctly in every test. 

 

2. Test results for FODT model (m=0) 

The system identification algorithm is applied to FODT models 

with disturbance magnitude ±0.01 and its results are shown in 

Table 1. 

For the third model of the Table 1, the system identification 

algorithm is also applied with different magnitude range of 

 

표   1. FODT 모델 식별결과. 

Table 1. Results of system identification (FODT). 

Models
Real Values Estimated Values 

K T L K T L 

(1) 5.2 1.9 4.3 5.245 3.50 3.55

(2) 4.6 2.8 1.3 4.624 3.65 2.25

(3) 4 5 7 3.971 4.30 5.40

(4) 1.6 2.8 5.7 1.603 3.75 5.10

(5) 0.8 7.3 2.6 0.789 5.05 5.35

 

표   2. 다양한 외란 하에서의 파라메터 식별 결과(FODT). 

Table 2. Result of parameters identified with different magnitude 

range of disturbance (FODT). 

Parameter Real Values
Estimated Values 

0 ±0.01 ±0.02 

K 4 3.98 3.97 3.96 

T 5 4.25 4.30 4.30 

L 7 5.40 5.40 5.40 
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disturbances i.e. 0, ±0.01, and ±0.02, and the results are 

summarized in Table 2. 

The plant output during the order and parameter identification 

for a step input response of FODT model is shown in Fig. 8.  

Note that the Para_Id_Algorithm_0 can be applied when the 

output is non zero. The real model and identified model are 

compared in the Fig. 9. 

 

3. Test results for SODT model (m=1)  

The system identification algorithm is applied to SODT models 

with disturbance magnitude ±0.01 and its results are shown in 

Table 3. 

The system identification algorithm is also applied with 

different magnitude range of disturbance i.e. 0, ±0.01, and ±0.02 

for the third SODT model and the results are summarized in 

Table 4. 

The plant output during the order and parameter identification 

for a step input response of SODT model is shown in Fig. 10. 

Note that the Para_Id_Algorithm_1 can be applied when the 

output is non zero. 

표   3. SODT 모델식별결과. 

Table 3. Results of system identification (SODT). 

Models
Real Values Estimated Values 

K T L K T L 

(1) 5.2 1.9 4.3 5.469 3.50 3.65

(2) 4.6 2.8 1.3 4.778 3.65 2.40

(3) 4 5 7 5.015 4.20 5.50

(4) 1.6 2.8 5.7 1.662 3.70 5.20

(5) 0.8 7.3 2.6 0.801 4.90 5.40

 

표   4.  다양한 외란 하에서의 파라메터 식별 결과 (SODT). 

Table 4. Result of parameters identified with different range of 

disturbance (SODT). 

Parameter Real Values
Estimated Values 

0 ±0.01 ±0.02

K 4 4.01 4.01 4.01 

T 5 4.25 4.20 4.20 

L 7 5.65 5.65 5.65 
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그림 9. SODT 모델 출력. 

Fig.  9. Output of SODT model. 
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그림 10. SODT 모델 식별결과. 

Fig.  10. Result of System identification (SODT). 

 

The real model and identified model are compared in the Fig. 11. 

The test results are shown in Fig. 9 for FODT model and in Fig. 

11 for SODT model, where solid line indicates the output of the 

real process model and dashed line is from the identified process 
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그림 7. FODT 모델출력. 

Fig.  7. Output of FODT model. 
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그림 8. FODT 모델 식별결과. 

Fig.  8. Result of system identification (FODT). 
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model. The simulation output matches with considered model 

quite well in presence of measuring noise. 

 

VI. EXPERIMENTAL RESULTS 

The experimental model setup shown in Fig. 12, was tested in 

our lab. For our experiment, we considered three different heaters 

for hot runners i.e. 1110W, 367W and 226W. We implemented 

the proposed identification method using ARM920T processor 

[15]. For each hot runner, the algorithms were applied ten times. 

The result of order identification algorithm gives 2 for all plants 

because the output behavior of all the plants similar to SODT 

model. The experimental results for hot runners are summarized 

in Table 5. 

The experimental results are shown in Fig. 13. 

The experimental results are shown in Fig. 13 for three different 

heaters for hot runners indicate by ‘□’, ‘*’ and ‘o’. Where ‘□’ 

indicates the 1110W hot runner, ‘*’ indicates 367W hot runner 

and ‘o’ indicates 226W hot runner. The experimental results of 

the identification method, works quit well in real life application.  

 

 

그림 11. ARM 기반 실험장치. 

Fig.  11. Experimental model setup of ARM system. 

 

표   5. 핫런너 실험결과. 

Table 5. Experimental results of hot runners. 

Heater K T L 

1110 W 0.0017 4.6860 4.3020 

367 W 0.0057 3.0580 1.0670 

226 W 0.0035 2.6501 1.3360 
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그림 12. 실험결과. 

Fig.  12. Experimental results. 

VII. CONCLUSIONS 

In this paper, a method to indentify parameters and order of 

three parameter model with time delay has been proposed. This 

method is based on step test signal and is robust to noise. The 

computation is straight forward and no iteration is required to 

indentify the parameters. This method does not require complex 

mathematical calculations and it can be implemented by using 

digital microprocessor. The effectiveness of the proposed order 

and parameter identification method has been demonstrated by 

using MATLAB simulation and real life experimental results of 

the heater of hot runner. 
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