DOI QR코드

DOI QR Code

Utilization of Rice Straw and Different Treatments to Improve Its Feed Value for Ruminants: A Review

  • Sarnklong, C. (Animal Nutrition Group, Department of Animal Sciences, Wageningen University) ;
  • Cone, J.W. (Animal Nutrition Group, Department of Animal Sciences, Wageningen University) ;
  • Pellikaan, W. (Animal Nutrition Group, Department of Animal Sciences, Wageningen University) ;
  • Hendriks, W.H. (Animal Nutrition Group, Department of Animal Sciences, Wageningen University)
  • 투고 : 2008.11.07
  • 심사 : 2009.12.24
  • 발행 : 2010.05.01

초록

This paper gives an overview of the availability, nutritive quality, and possible strategies to improve the utilization of rice straw as a feed ingredient for ruminants. Approximately 80% of the rice in the world is grown by small-scale farmers in developing countries, including South East Asia. The large amount of rice straw as a by-product of the rice production is mainly used as a source of feed for ruminant livestock. Rice straw is rich in polysaccharides and has a high lignin and silica content, limiting voluntary intake and reducing degradability by ruminal microorganisms. Several methods to improve the utilization of rice straw by ruminants have been investigated in the past. However, some physical treatments are not practical because of the requirement for machinery or treatments are not economical feasible for the farmers. Chemical treatments, such as NaOH, $NH_3$ or urea, currently seem to be more practical for onfarm use. Alternative treatments to improve the nutritive value of rice straw are the use of ligninolytic fungi (white-rot fungi), with their extracellular ligninolytic enzymes, or specific enzymes degrading cellulose and/or hemicellulose. The use of fungi or enzyme treatments is expected to be a more practical and environmental-friendly approach for enhancing the nutritive value of rice straw and can be costeffective in the future. Using fungi and enzymes might be combined with the more classical chemical or physical treatments. However, available data on using fungi and enzymes for improving the quality of rice straw are relatively scarce.

키워드

참고문헌

  1. Abou-EL-Enin, O. H., J. G. Fadel and D. J. Mackill. 1999. Differences in chemical composition and fibre digestion of rice straw with, without, anhydrous ammonia from 53 rice varieties. Anim. Feed Sci. Technol. 79:129-136 https://doi.org/10.1016/S0377-8401(98)00271-5
  2. Agbagla-Dohnani, A., P. Noziere, B. Gaillard-Martinie, M. Puard and M. Doreau. 2003. Effect of silica content on rice straw ruminal degradation. J. Anim. Sci. 140:183-192 https://doi.org/10.1017/S0021859603003034
  3. Akter, Y., M. A. Akbar, M. Shahjalal and T. U. Ahmed. 2004. Effect of urea molasses multi-nutrient blocks supplementation of dairy cows fed rice straw and green grasses on milk yield, composition, live weight gain of cows and calves and feed intake. Pak. J. Biol. Sci. 7(9):1523-1525 https://doi.org/10.3923/pjbs.2004.1523.1525
  4. Arieli, A. 1997. Whole cottonseed in dairy cattle feeding: a review. Anim. Feed Sci. Technol. 72:97-110 https://doi.org/10.1016/S0377-8401(97)00169-7
  5. Arora, D. S. and P. K. Gill. 2005. Production of ligninolytic enzymes by Phlebia floridensis. World J. Microbiol. Biotechnol. 21:1021-1028 https://doi.org/10.1007/s11274-004-7655-2
  6. Arora, D. S., M. Chander and P. K. Gill. 2002. Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int. Biodeterior. Biodegradation 50:115-120 https://doi.org/10.1016/S0964-8305(02)00064-1
  7. Bae, H. D., T. A. McAllister, E. G. Kokko, F. L. Leggett, L. J. Yanke, K. D. Jakober, J. K. Ha, H. T. Shin and K.-J. Cheng. 1997. Effect of silica on the colonization of rice straw by ruminal bacteria. Anim. Feed Sci. Technol. 65:165-181 https://doi.org/10.1016/S0377-8401(96)01093-0
  8. Baile, C. A. and J. M. Forbes. 1974. Control of feed intake and regulation of energy balance in ruminants. Physiol. Rew. 54:160-214
  9. Barrasa, J. M., S. Camarero, A. T. Martinez and K. Ruel. 1995. Ultrastructural aspects of wheat straw degradation by Phanerochaete chrysosporium and Trametes versicolor. Appl. Microbiol. Biotechnol. 43:766-770 https://doi.org/10.1007/BF00164786
  10. Beauchemin, K. A., D. Colombatto and D. P. Morgavi. 2004. A rationale for the development of feed enzyme products for ruminants. Can. J. Anim. Sci. 84:23-36 https://doi.org/10.4141/A02-103
  11. Beauchemin, K. A., L. M. Rode and V. J. H. Sewalt. 1995. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can. J. Anim. Sci. 75:641-644 https://doi.org/10.4141/cjas95-096
  12. Berger, L. L., G. C. Fahey, L. D. Bourquin and E. C. Tilgeyer. 1994. Modification of forage quality after harvest. In: Forage Quality, Evaluation, and Utilisation (Ed. G. C. Fahey). American Society of Agronomy, Inc, Madison, USA. pp. 922-966
  13. Calzado, J. F. and C. Rolz. 1990. Estimation of the growth rate of Pleurotus on stocked straw. J. Ferment. Bioeng. 69:70-71 https://doi.org/10.1016/0922-338X(90)90169-W
  14. Chaudhry, A. S. 1998. Nutrient composition, digestion and rumen fermentation in sheep of wheat straw treated with calcium oxide, sodium hydroxide and alkaline hydrogen peroxide. Anim. Feed Sci. Technol. 74:315-328 https://doi.org/10.1016/S0377-8401(98)00178-3
  15. Chaudhry, A. S. and E. L. Miller. 1996. The effect of sodium hydroxide and alkaline hydrogen peroxide on chemical composition of wheat straw and voluntary intake, growth and digesta kinetics in store lambs. Anim. Feed Sci. Technol. 60:69-86 https://doi.org/10.1016/0377-8401(95)00926-4
  16. Chen, J., S. L. Fales, G. A. Varga and D. J. Royse. 1996. Biodegradability of free monomeric cell-wall-bound phenolic acids in maize stover by two strains of white-rot fungi. J. Sci. Food Agric. 71:145-150 https://doi.org/10.1002/(SICI)1097-0010(199606)71:2<145::AID-JSFA560>3.0.CO;2-1
  17. Chenost, M. and C. Kayouli. 1997. Roughage Utilisation in Warm Climates. FAO Animal Production and Health Paper 135, Rome
  18. Colombatto, D., G. Hervas, W. Z. Yang and K. A. Beauchemin. 2003a. Effects of enzymes supplementation of a total mixed ration on microbial fermentation in continous culture, maintained at high and low pH. J. Anim. Sci. 81:2617-2627
  19. Colombatto, D., D. P. Morgavi, A. F. Furtado and K. A. Beauchemin. 2003b. Screening of exogenous enzymes for ruminant diets: relationship between biochemical characteristics and in vitro ruminal degradation. J. Anim. Sci. 81:2628-2638
  20. Conrad, H. R. 1966. Symposium on factors influencing the voluntary intake of herbage by ruminants: Physiological and physical factors limiting feed intake. J. Anim. Sci. 25:227-235
  21. Devendra, C. and D. Thomas. 2002. Crop-animal interactions in mixed farming systems in Asia. Agric. Syst. 71:27-40 https://doi.org/10.1016/S0308-521X(01)00034-8
  22. Devendra, C. 1997. Crop residues for feeding animals in Asia:Technology development and adoption in crop/livestock systems. In: Crop Residuals in Sustainable Mixed Crop/livestock Farming System (Ed. C. Renard). CAB International; Wallingford, UK. pp. 241-267
  23. Dias da Silva, A. A. 1993. Upgrading of low quality feeds by means of urinary urea. In: Urine - a Wasted, Renewable Natural Resources (Ed. F. Sundstøl and E. Owen). NORAGRIC Occasional Papers Series C, Development and Environment Vol. 12:42-49
  24. Doyle, P. T., C. Devendra and G. R. Pearce. 1986. Rice straw as a feed for ruminants. IDP, Canberra, Australia
  25. Eriksson, K-EL, R. A. Blanchette and P. Ander. 1990. Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, Heidelberg, New York
  26. Eun, J.-S., K. A. Beauchemin, S.-H. Hong and M. W. Bauer. 2006. Exogenous enzymes added to untreated or ammoniated rice straw: Effects on in vitro fermentation characteristics and degradability. Anim. Feed Sci. Technol. 131:86-101
  27. Fadel Elseed, A. M. A. 2005. Effect of supplemental protein feeding frequency on ruminal chracteristics and microbial N production in sheep fed treated rice straw. Small Rumin. Res. 57:11-17 https://doi.org/10.1016/j.smallrumres.2004.04.013
  28. Fadel Elseed, A. M. A., J. Sekine, M. Hishinuma and K. Hamana. 2003. Effects of ammonia, urea plus calcium hydroxide and animal urine treatments on chemical composition and in sacco degradability of rice straw. Asian-Aust. J. Anim. Sci. 16:368-373
  29. Fazaeli, H., A. Azizi and M. Amile. 2006. Nutritive value index of treated wheat straw with Pleurotus fungi fed to sheep. Pak. J. Biol. Sci. 9(13):2444-2449 https://doi.org/10.3923/pjbs.2006.2444.2449
  30. Giraldo, L. A., M. L. Tejido, M. J. Ranilla and M. D. Carro. 2007. Effects of exogenous cellulase supplementation on microbial growth and ruminal fermentation of a high-forage diet in Rusitec fermenters. J. Anim. Sci. 85:1962-1970 https://doi.org/10.2527/jas.2006-318
  31. Hadjipanayiotou, M. 1984. Effect of level and type of alkali on the digestibility in vitro of ensiled, chopped barley straw. Agric. Wastes 10:187-194 https://doi.org/10.1016/0141-4607(84)90059-3
  32. Hoover, W. H. 1986. Chemical factors involved in ruminal fiber digestion. J. Dairy Sci. 69:2755-2766 https://doi.org/10.3168/jds.S0022-0302(86)80724-X
  33. Howard, R. L., E. Abotsi, E. L. Jansen and S. Howard. 2003. Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2:602-619
  34. Ibrahim, M. N. M. 1983. Physical, chemical, physico-chemical and biological treatments of crop residues. In: The Utilization of Fibrous Agricultural Residues (Ed. G. R. Pearce). Australian Development Assistance Bureau, Research for Development Seminar three, Los Banos, Philippines, 18-23 May 1981. Australian Government Publishing Service, Canberra, Australia. pp. 53-68
  35. Iiyama, K., T. B. T. Lam and B. A. Stone. 1990. Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochem. 29:733-737 https://doi.org/10.1016/0031-9422(90)80009-6
  36. Jackson, M. G. 1977. Review article: The alkali treatment of straw. Anim. Feed Sci. Technol. 2:105-130 https://doi.org/10.1016/0377-8401(77)90013-X
  37. Jafari, A., M. A. Edriss, M. Alikhani and G. Emtiazi. 2005. Effects of treated wheat straw with exogenous fibre-degrading enzymes on wool characteristics of ewe lambs. Pak. J. Nutr. 4:321-326 https://doi.org/10.3923/pjn.2005.321.326
  38. Jalc, D. 2002. Straw enrichment for fodder production by fungi. In: The Mycota XI Agricultural Applications (Ed. F. Kempken). ${\copyright}$ Springer-Verlag, Berlin, Heidelberg. pp. 19-38
  39. Karunanadaa, K. and G. A. Varga. 1996a. Colinization of rice straw by white-rot fungi (Cyathus stercoreus): Effect on ruminal fermentation pattern, nitrogen metabolism, and fiber utilization during continuous culture. Anim. Feed Sci. Technol. 61:1-16 https://doi.org/10.1016/0377-8401(96)00958-3
  40. Karunanadaa, K. and G. A. Varga. 1996b. Colinization of rice straw by white-rot fungi: cell eall monosaccharides, phenolic acids, ruminal fermentation characteristics and digestibility of cell wall fiber components in vitro. Anim. Feed Sci. Technol. 63:273-288 https://doi.org/10.1016/S0377-8401(96)01019-X
  41. Karunanandaa, K., G. A. Varga, D. E. Akin, L. L. Rigsby and D. J. Royse. 1995. Botanical fractions of rice straw colonized by white-rot fungi: Changes in chemical composition and structure. Anim. Feed Sci. Technol. 55:179-199 https://doi.org/10.1016/0377-8401(95)00805-W
  42. Karunanandaa, K., S. L. Fales, G. A. Varga and D. J. Royse. 1992. Chemical composition and biodegradability of crop residues colonized by white rot fungi. J. Sci. Food Agric. 60:105-112 https://doi.org/10.1002/jsfa.2740600117
  43. Kirk, T. K. and R. L. Farrell. 1987. Enzymatic 'combustion': The microbial degradation of lignin. Annu. Rev. Microbiol. 41:465-505 https://doi.org/10.1146/annurev.mi.41.100187.002341
  44. Kluczek-Turpeinen, B., P. Maijala, M. Hofrichter and A. Hatakka. 2007. Degradation and enzymatic activties of three Paecilomyces inflatus strains grown on diverse lignocellulosic substrates. Int. Biodeterior. Biodegrad. 59:283-291 https://doi.org/10.1016/j.ibiod.2006.09.007
  45. Lam, T. B. T., K. Kadoya and K. Iiyama. 2001. Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the b-position, in grass cell walls. Phytochem. 57:987-992 https://doi.org/10.1016/S0031-9422(01)00052-8
  46. Lechner, B. E. and V. L. Papinutti. 2006. Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw. Process Biochem. 41:594-598 https://doi.org/10.1016/j.procbio.2005.08.004
  47. Liu, J. X. and E. R. Ørskov. 2000. Cellulase treatment of untreated and steam pre-treated rice straw-effect on in vitro fermentation characteristics. Anim. Feed Sci. Technol. 88:189-200 https://doi.org/10.1016/S0377-8401(00)00218-2
  48. Liu, J. X., E. R. Ørskov and X. B. Chen. 1999. Optimization of steam treatment as a method for upgrading rice straw as feeds. Anim. Feed Sci. Technol. 76:345-357 https://doi.org/10.1016/S0377-8401(98)00196-5
  49. Liu, J. X., A. Susenbeth and K. H. Südekum. 2002. In vitro gas production measurements to evaluate interactions between untreated and chemically treated rice straws, grass hay, and mulberry leaves. J. Anim. Sci. 80:517-524
  50. NARC newsletter (rice special issue), May 2004
  51. Novotny, C., K. Svobodova, P. Erbanova, T. Cajthaml, A. Kasinath, E. Lang and V. Sasek. 2004. Ligninolytic fungi in bioremediation: Extracellular enzyme production and degradation rate. Soil Biol. Biochem. 36:1545-1551 https://doi.org/10.1016/j.soilbio.2004.07.019
  52. Phang, O. C. and J. Vadiveloo. 1992. Effects of varieties, botanical fractions and supplements of palm oil by-products on the feeding value of rice straw in goats. Small Rumin. Res. 6:295-301 https://doi.org/10.1016/0921-4488(91)90136-E
  53. Pradhan, R., H. Tobioka and I. Tasaki. 1997. Effect of moisture content and different levels of additives on chemical composition and in vitro dry matter digestibility of rice straw. Anim. Feed Sci. Technol. 68:273-284
  54. Prasad, R. D. D., M. R. Reddy and G. V. N. Reddy. 1998. Effect of feeding baled and stacked urea treated rice straw on the performance of crossbred cows. Anim. Feed Sci. Technol. 73:347-352 https://doi.org/10.1016/S0377-8401(98)00140-0
  55. Rai, S. N. and V. D. Mudgal. 1996. Effect of alkali and (or) steam treatment of wheat straw or cellulase augmentd concentrate mixture on rumen fermentation on goats. Small Rumin. Res. 19:219-225 https://doi.org/10.1016/0921-4488(95)00759-8
  56. Reddy, D. V. 1996. Evaluation of rice straw-poultry droppings based rations supplemented with graded levels of rice bran in fistulated buffaloes. Anim. Feed Sci. Technol. 58:227-237 https://doi.org/10.1016/0377-8401(95)00902-7
  57. Rezaeian, M., G. W. Beakes and A. S. Chaudhry. 2005. Relative fibrolytic activities of anaerobic rumen fungi on untreated and sodium hydroxide treated barley straw in in vitro culture. Anaerobe 11:163-175 https://doi.org/10.1016/j.anaerobe.2004.10.008
  58. Rodrigues, M. A. M., P. Pinto, R. M. F. Bezerra, A. A. Dias, C. V. M. Guedes, V. M. G. Gardoso, J. W. Cone, L. M. M. Ferreira, J. Colaco and C. A. Sequeira. 2008. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim. Feed Sci. Technol. 141:326-338 https://doi.org/10.1016/j.anifeedsci.2007.06.015
  59. Saadulah, M., M. Haque and F. Dolberg. 1981. Treatment of rice straw with lime. Trop. Anim. Prod. 6:116-120
  60. Schiere, J. B. and M. N. M. Ibrahim. 1989. Feeding of ureaammonia treated rice straw: A compilation of miscellaneous reports produced by the Straw Utilization Project (Sri Lanka). Pudoc, Wageningen
  61. Schubert, R. and G. Flachowsky. 1994. Investigations on nitrogen flow into and out of nylon bag after ruminal incubation and feeding of untreated or 15N horse urine treated wheat straw in small ruminants. Anim. Feed Sci. Technol. 48:199-209 https://doi.org/10.1016/0377-8401(94)90172-4
  62. Selim, A. S. M., J. Pan, T. Suzuki, K. Ueda, Y. Kobayashi and K. Tanaka. 2002. Postprandial changes in particle associated ruminal bacteria in sheep fed ammoniated rice straw. Anim. Feed Sci. Technol. 19:227-287
  63. Selim, A. S. M., J. Pan, T. Takano, T. Suzuki, S. Koike, Y. Kobayashi and K. Tanaka. 2004. Effect of ammonia treatment on physical strength of rice straw, distribution of straw particles and particle-associated bacteria in sheep rumen. Anim. Feed Sci. Technol. 115:117-128 https://doi.org/10.1016/j.anifeedsci.2004.01.011
  64. Shen, H. S., D. B. Ni and F. Sundstøl. 1998. Studies on untreated and urea-treated rice straw from three cultivation seasons: 1. Physical and chemical measurements in straw and straw fractions. Anim. Feed Sci. Technol. 73:243-261 https://doi.org/10.1016/S0377-8401(98)00157-6
  65. Shen, H. S., F. Sundstøl, E. R. Eng and L. O. Eik. 1999. Studies on untreated and urea-treated rice straw from three cultivation seasons: 3. Histological investigations by light and scanning electron microscopy. Anim. Feed Sci. Technol. 80:151-159 https://doi.org/10.1016/S0377-8401(99)00045-0
  66. Sirohi, S. K. and S. N. Rai. 1995. Associative effect of lime plus urea treatment of paddy straw on chemical composition and in vitro digestibility. Indian J. Anim. Sci. 65:1346-1351
  67. Stensig, T., M. R. Weisbjerg, J. Madsen and T. Hvelplund. 1994. Estimation of voluntary feed intake from in sacco degradation and rate of passage of DM or NDF. Livest. Prod. Sci. 39:49-52 https://doi.org/10.1016/0301-6226(94)90152-X
  68. Sundstøl, F. and E. M. Coxworth. 1984. Ammonia treatment. In: Straw and Other Fibrous By-products as Feed (Ed. F. Sundstøl and E. Owen). Developments in Animal Veterinary Sciences, 14. Elsevier, Amsterdam, pp. 196-247
  69. Theander, O. and P. Aman. 1984. Anatomical and chemical characteristics. In: Straw and Other Fibrous By-products as Feed. (Ed. F. Sundst$\phi$l and E. Own). Developments in Animal Veterinary Sciences, 14. Elsevier, Amsterdam, pp. 45-78
  70. Uden, P. 1988. The effect of grinding and pelleting hay on digestibility, fermentation rate, digesta passage and rumen and faecal particle size in cows. Anim. Feed Sci. Technol. 19:145-157 https://doi.org/10.1016/0377-8401(88)90063-6
  71. Vadiveloo, J. 1992. Varietal differences in the chemical composition and in vitro digestibility of rice straw. J. Agric. Sci. 119:27-33 https://doi.org/10.1017/S0021859600071513
  72. Vadiveloo, J. 1995. Factors contributing to varietal differences in the nutritive value of rice straw. Anim. Feed Sci. Technol. 54:45-53 https://doi.org/10.1016/0377-8401(95)00776-J
  73. Vadiveloo, J. 2000. Nutritional properties of the leaf and stem of rice straw. Anim. Feed Sci. Technol. 83:57-65 https://doi.org/10.1016/S0377-8401(99)00107-8
  74. Vadiveloo, J. 2003. The effect of agronomic improvement and urea treatment on the nutritional value of Malaysian rice straw varieties. Anim. Feed Sci. Technol. 108:33-146 https://doi.org/10.1016/S0377-8401(03)00170-6
  75. Van Soest, P. J. 2006. Review: rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. Technol. 130:137-171 https://doi.org/10.1016/j.anifeedsci.2006.01.023
  76. Vu, D. D., L. X. Cuong, C. A. Dung and P. H. Hai. 1999. Use of urea-molasses-multinutrient block and urea-treated rice straw for improving dairy cattle productivity in Vietnam. Prev. Vet. Med. 38:187-193 https://doi.org/10.1016/S0167-5877(98)00124-X
  77. Wanapat, M., A. Petlum and O. Pimpa. 1999. Strategic supplementation with a high quality feed block on roughage intake, milk yield and composition and economic return in lactating dairy cows. Asian-Aust. J. Anim. Sci. 12:901-903
  78. Wanapat, M., S. Polyrach, K. Boonnop, C. Mapato and A. Cherdthong. 2009. Effect of treating rice straw with urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livest. Sci. 125:238-243 https://doi.org/10.1016/j.livsci.2009.05.001
  79. Wanapat, M., K. Sommart and K. Saardrak. 1996. Cottonseed meal supplementation of dairy cattle fed rice straw. Livestock Research for Rural Development. 8(3) (http://www.fao.org/ ag/AGa/ AGAP- /FRG/FEEDback/lrrd/lrrd8/3/metha83.htm)
  80. Wang, Y., B. M. Spratling, D. R. ZoBell, R. D. Wiedmeier and T. A. McAllister. 2004. Effect of alkali pretreatment of wheat straw on the efficacy of exogenous fibrolytic enzymes. J. Anim. Sci. 82:198-208
  81. Warly, L., T. Matsui, T. Harumoto and T. Fujihara. 1992. Study on the utilization of rice straw by sheep: Part I. The effect of soybean meal supplementation on the eating and rumination behavior. Asian-Aust. J. Anim. Sci. 5:695-698
  82. Yamakava, M. and H. A. Okamnto. 1992. Effect of incubation with edible mushroom, Pleurotus ostreatus, on voluntary intake and digestibility or rice bran by sheep. Anim. Feed Sci. Technol. 63:133-138
  83. Yang, W. Z., K. A. Beauchemin and L. M. Rode. 2000. A comparison of methods of adding fibrolytic enzymes to lactating cow diets. J. Dairy Sci. 83:2512-2520 https://doi.org/10.3168/jds.S0022-0302(00)75143-5
  84. Zhu, S., Y. Wu, Z. Yu, J. Liao and Y. Zhang. 2005. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem. 40:3082-3086 https://doi.org/10.1016/j.procbio.2005.03.016

피인용 문헌

  1. Negative effects of tropospheric ozone on the feed value of rice straw are mitigated by an ozone tolerance QTL vol.17, pp.7, 2011, https://doi.org/10.1111/j.1365-2486.2010.02379.x
  2. vol.91, pp.4, 2011, https://doi.org/10.4141/cjas2011-067
  3. Lignin: Characterization of a Multifaceted Crop Component vol.2013, pp.1537-744X, 2013, https://doi.org/10.1155/2013/436517
  4. Dry chemical processing and ensiling of rice straw to improve its quality for use as ruminant feed vol.45, pp.5, 2013, https://doi.org/10.1007/s11250-012-0349-0
  5. Effect of Stylosanthes guianensis supplementation on intake and nitrogen metabolism of Bos indicus cattle offered a basal diet of mixed rice straw and tropical grass vol.53, pp.5, 2013, https://doi.org/10.1071/AN11307
  6. Effects of straw treatment and nitrogen supplementation on digestibility, intake and physiological responses of water intake as well as urine and faecal characteristics vol.98, pp.1, 2013, https://doi.org/10.1111/jpn.12052
  7. Feed intake, nutrient digestibility and ruminal fermentation activities in sheep-fed peanut hulls treated with Trichoderma viride or urea vol.46, pp.1, 2014, https://doi.org/10.1007/s11250-013-0479-z
  8. Interaction of rumen bacteria as assumed by colonization patterns on untreated and alkali-treated rice straw vol.85, pp.5, 2014, https://doi.org/10.1111/asj.12176
  9. Subcutaneous Adipose Fatty Acid Profiles and Related Rumen Bacterial Populations of Steers Fed Red Clover or Grass Hay Diets Containing Flax or Sunflower-Seed vol.9, pp.8, 2014, https://doi.org/10.1371/journal.pone.0104167
  10. Improving the quality of rice straw by urea and calcium hydroxide on rumen ecology, microbial protein synthesis in beef cattle vol.99, pp.3, 2015, https://doi.org/10.1111/jpn.12253
  11. Improving Nutritional Quality of Cocoa Pod (Theobroma cacao) through Chemical and Biological Treatments for Ruminant Feeding: In vitro and In vivo Evaluation vol.28, pp.3, 2015, https://doi.org/10.5713/ajas.13.0798
  12. Improving the feeding value of straws with Pleurotus ostreatus vol.55, pp.2, 2015, https://doi.org/10.1071/AN14184
  13. Production of cellulases from Humicola fuscoatra MTCC 1409: Role of enzymes in paddy straw digestion vol.9, pp.9, 2015, https://doi.org/10.5897/AJMR2014.7270
  14. Effects of Rice Straw Supplemented with Urea and Molasses on Intermediary Metabolism of Plasma Glucose and Leucine in Sheep vol.29, pp.4, 2016, https://doi.org/10.5713/ajas.15.0358
  15. Nutritional value of baled rice straw for ruminant feed vol.45, pp.7, 2016, https://doi.org/10.1590/S1806-92902016000700006
  16. Milk yield response of cows supplemented with sorghum stover and Tithonia diversifolia leaf hay diets during the dry season in northern Uganda vol.48, pp.7, 2016, https://doi.org/10.1007/s11250-016-1119-1
  17. The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0098-4
  18. Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0110-z
  19. Improving ruminal degradability and energetic values of bamboo shoot shell using chemical treatments vol.87, pp.7, 2016, https://doi.org/10.1111/asj.12512
  20. Effects of graded levels of liquid brewer's yeast on chemical composition and fermentation quality in cassava pulp and rice straw-based total mixed ration silage vol.88, pp.4, 2016, https://doi.org/10.1111/asj.12682
  21. Adding sweet potato vines improve the quality of rice straw silage vol.88, pp.4, 2016, https://doi.org/10.1111/asj.12690
  22. Integrating Characterization of Smallholders’ Feeding Practices with On-Farm Feeding Trials to Improve Utilization of Crop Residues on Smallholder Farms vol.2017, pp.2314-7539, 2017, https://doi.org/10.1155/2017/6952407
  23. Effects of fungal (Lentinussajor-caju) treated oil palm frond on performance and carcass characteristics in finishing goats vol.30, pp.6, 2017, https://doi.org/10.5713/ajas.16.0704
  24. Yeast mixture of liquid beer and cassava pulp with rice straw for the growth of dairy heifers vol.49, pp.3, 2017, https://doi.org/10.1007/s11250-016-1218-z
  25. (L.) Walp.) stover treated with white-rot fungi as rabbit feed vol.97, pp.13, 2017, https://doi.org/10.1002/jsfa.8395
  26. Simultaneous determination of sulfoxaflor and its metabolites, X11719474 and X11721061, in brown rice and rice straw after field application using LC-MS/MS vol.97, pp.2, 2017, https://doi.org/10.1080/03067319.2017.1282473
  27. treated wheat straw under anaerobic conditions pp.00225142, 2018, https://doi.org/10.1002/jsfa.8745
  28. Harvesting nutrients from source-separated urine using powdered rice straw pp.1479-487X, 2017, https://doi.org/10.1080/09593330.2017.1321690
  29. Improved Treatment and Utilization of Rice Straw by Coprinopsis cinerea pp.1559-0291, 2018, https://doi.org/10.1007/s12010-017-2579-0
  30. Nutritive utilization of Moringa oleifera tree stalks treated with fungi and yeast to replace clover hay in growing lambs pp.1572-9680, 2017, https://doi.org/10.1007/s10457-017-0158-6
  31. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review vol.7, pp.7, 2014, https://doi.org/10.3390/en7074446
  32. Synthesis of silica particles from rice straw waste using a simple extraction method vol.128, pp.1757-899X, 2016, https://doi.org/10.1088/1757-899X/128/1/012040
  33. Improving ruminal digestibility of various wheat straw types by white-rot fungi pp.00225142, 2019, https://doi.org/10.1002/jsfa.9320
  34. The use of rye, oat and triticale straw as fillers of natural rubber composites vol.75, pp.10, 2018, https://doi.org/10.1007/s00289-018-2289-y
  35. Screening of white-rot fungi for bioprocessing of wheat straw into ruminant feed vol.125, pp.2, 2018, https://doi.org/10.1111/jam.13894
  36. Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview vol.20, pp.3, 2018, https://doi.org/10.1007/s10163-018-0739-0
  37. single cell protein production from rice straw pulp in solid state fermentation vol.345, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/345/1/012043
  38. A Preliminary Study of the Effect of Bioavailable Fe and Co on the Anaerobic Digestion of Rice Straw vol.12, pp.4, 2019, https://doi.org/10.3390/en12040577
  39. Effects of urea plus nitrate pretreated rice straw and corn oil supplementation on fiber digestibility, nitrogen balance, rumen fermentation, microbiota and methane emissions in goats vol.10, pp.1, 2019, https://doi.org/10.1186/s40104-019-0312-2
  40. Bacterial diversity associated with feeding dry forage at different dietary concentrations in the rumen contents of Mehshana buffalo (Bubalus bubalis) using 16S pyrotags vol.25, pp.None, 2010, https://doi.org/10.1016/j.anaerobe.2013.11.008
  41. Evaluation of composition and individual variability of rumen microbiota in yaks by 16S rRNA high-throughput sequencing technology vol.34, pp.None, 2015, https://doi.org/10.1016/j.anaerobe.2015.04.010
  42. Fermentation Quality and Additives: A Case of Rice Straw Silage vol.2016, pp.None, 2010, https://doi.org/10.1155/2016/7985167
  43. A simple method for squeezing juice from rice stems and its use in the high-throughput analysis of sugar content in rice stems vol.19, pp.2, 2010, https://doi.org/10.1080/1343943x.2015.1128099
  44. Effect of urea treatment of cocoa pod on rumen fermentation characteristicsin vitro vol.101, pp.None, 2017, https://doi.org/10.1088/1755-1315/101/1/012031
  45. The effects of hydrolysed sorghum on growth performance and meat quality of rabbits vol.26, pp.2, 2010, https://doi.org/10.4995/wrs.2018.7822
  46. Assessment of the nutritive value of urea-calcium hydroxide-treated rice straw by in sacco technique vol.59, pp.9, 2010, https://doi.org/10.1071/an18083
  47. Evaluation of Rice Straw Yield, Fibre Composition and Collection Under Mediterranean Conditions vol.22, pp.2, 2010, https://doi.org/10.2478/ata-2019-0008
  48. Estimation and Efficient Utilization of Straw Resources in Ghana vol.11, pp.15, 2010, https://doi.org/10.3390/su11154172
  49. Influence of host plant and rice straw as substrate on mass multiplication of arbuscular mycorrhizal fungi for large-scale agricultural application vol.8, pp.suppl1, 2019, https://doi.org/10.1007/s40093-019-0255-9
  50. Provision of beta‐glucan prebiotics (cellooligosaccharides and kraft pulp) to calves from pre‐ to post‐weaning period on pasture vol.90, pp.12, 2010, https://doi.org/10.1111/asj.13299
  51. Assessment of ecosystem services of rice farms in eastern India vol.8, pp.1, 2010, https://doi.org/10.1186/s13717-019-0189-1
  52. Pleurotus Ostreatus and Volvariella Volvacea Can Enhance the Quality of Purple Field Corn Stover and Modulate Ruminal Fermentation and Feed Utilization in Tropical Beef Cattle vol.9, pp.12, 2010, https://doi.org/10.3390/ani9121084
  53. Effects of enzyme + bacteria treatment on growth performance, rumen bacterial diversity, KEGG pathways, and the CAZy spectrum of Tan sheep vol.11, pp.1, 2010, https://doi.org/10.1080/21655979.2020.1837459
  54. Heterologous Expression of Laccase From Lentinula edodes in Pichia pastoris and Its Application in Degrading Rape Straw vol.11, pp.None, 2010, https://doi.org/10.3389/fmicb.2020.01086
  55. Optimizing livestock feed provision to improve the efficiency of the agri-food system vol.44, pp.2, 2010, https://doi.org/10.1080/21683565.2019.1633455
  56. The effects of fermentation using gamma-irradiated Aspergillus niger and adding rice bran on rice straw digestibility: in vitro study vol.465, pp.None, 2010, https://doi.org/10.1088/1755-1315/465/1/012017
  57. In vitro digestibility of fermented rice straw combined with different levels of green concentrate vol.492, pp.None, 2020, https://doi.org/10.1088/1755-1315/492/1/012026
  58. Crop residue management in rice-wheat cropping system for resource conservation and environmental protection in north-western India vol.22, pp.5, 2010, https://doi.org/10.1007/s10668-019-00370-z
  59. An Assessment on the Technical and Economic Feasibility of Mechanized Rice Straw Collection in the Philippines vol.12, pp.17, 2010, https://doi.org/10.3390/su12177150
  60. Cow-calf intensification through the feeding of rice straw vol.242, pp.None, 2020, https://doi.org/10.1016/j.livsci.2020.104296
  61. Chemical composition and in vitro digestibility of rice straw treated with Pleurotus florida vol.14, pp.1, 2010, https://doi.org/10.1080/26895293.2021.1947392
  62. Diversity of microbes colonizing forages of varying lignocellulose properties in the sheep rumen vol.9, pp.None, 2010, https://doi.org/10.7717/peerj.10463
  63. Treatment of Rice Stubble with Pleurotus ostreatus and Urea Improves the Growth Performance in Slow-Growing Goats vol.11, pp.4, 2010, https://doi.org/10.3390/ani11041053
  64. Evaluation of chemical composition and in vitro digestibility of stovers of different pearl millet varieties and their effect on the performance of sheep in the West African Sahel vol.70, pp.2, 2010, https://doi.org/10.1080/09064702.2021.1919193
  65. Review on anaerobic digestion of rice straw for biogas production vol.28, pp.19, 2010, https://doi.org/10.1007/s11356-020-08762-9
  66. Effect of sorbic acid and dual‐purpose inoculants on the fermentation quality and aerobic stability of high dry matter rice straw silage vol.130, pp.5, 2021, https://doi.org/10.1111/jam.14882
  67. Effect of combining autoclave and ammoniation on nutritional value and in vitro digestibility of rice straw vol.788, pp.1, 2010, https://doi.org/10.1088/1755-1315/788/1/012052
  68. Equipment Performance, Costs and Constraints of Packaging and Transporting Rice Straw for Alternative Uses to Burning in the “Parc Natural l’Albufera de València” (Spain) vol.11, pp.6, 2010, https://doi.org/10.3390/agriculture11060570
  69. Comparison of Ruminal Degradability, Indigestible Neutral Detergent Fiber, and Total-Tract Digestibility of Three Main Crop Straws with Alfalfa Hay and Corn Silage vol.11, pp.11, 2010, https://doi.org/10.3390/ani11113218
  70. Bioresource Nutrient Recycling in the Rice-Wheat Cropping System: Cornerstone of Organic Agriculture vol.10, pp.11, 2010, https://doi.org/10.3390/plants10112323
  71. Sunnhemp (Crotalaria juncea, L.) silage can enrich rumen fermentation process, microbial protein synthesis, and nitrogen utilization efficiency in beef cattle crossbreds vol.53, pp.1, 2010, https://doi.org/10.1007/s11250-021-02628-z
  72. Novel Crabtree negative yeast from rumen fluids can improve rumen fermentation and milk quality vol.11, pp.1, 2010, https://doi.org/10.1038/s41598-021-85643-2