DOI QR코드

DOI QR Code

Effects of Feeding Purified Zearalenone Contaminated Diets with or without Clay Enterosorbent on Growth, Nutrient Availability, and Genital Organs in Post-weaning Female Pigs

  • Jiang, S.Z. (Department of Animal Sciences and Technology, Shandong Agricultural University) ;
  • Yang, Z.B. (Department of Animal Sciences and Technology, Shandong Agricultural University) ;
  • Yang, W.R. (Department of Animal Sciences and Technology, Shandong Agricultural University) ;
  • Yao, B.Q. (Department of Animal Sciences and Technology, Shandong Agricultural University) ;
  • Zhao, H. (Department of Animal Sciences and Technology, Shandong Agricultural University) ;
  • Liu, F.X. (Department of Animal Sciences and Technology, Shandong Agricultural University) ;
  • Chen, C.C. (Department of Applied Chemistry, Chaoyang University of Technology) ;
  • Chi, F. (Amlan International)
  • Received : 2009.04.20
  • Accepted : 2009.07.18
  • Published : 2010.01.01

Abstract

The effects of different levels of natural clay enterosorbent on the growth, nutrient availability, and genital organs of post-weaning female pigs fed with an addition of zearalenone (ZEA) were investigated in the study. A total of thirty-five post-weaning gilts ($L{\times}Y{\times}D$) with an average body weight of 12.36${\pm}$1.46 kg were used in the test. The gilts were raised individually in metabolism cages and fed a corn-soybean meal-whey basal diet with an addition of 0 or 1 mg/kg of ZEA for 24 d with four levels of natural clay enterosorbent added in the feed. The treatments were: i) control; ii) control+2.5 g/kg clay; iii) control+1 mg/kg ZEA; iv) control+1 mg/kg ZEA+1.25 g/kg clay; v) control+1 mg/kg ZEA+2.5 g/kg clay; vi) control+1 mg/kg ZEA+5.0 g/kg clay; vii) control+1 mg/kg ZEA +10 g/kg clay. Pigs fed diets contaminated with additional purified ZEA had significantly reduced apparent digestibility of crude protein (CP), gross energy (GE) and apparent metabolic rate of GE (ME/GE, p<0.05) without changes of net protein utilization (NPU, p>0.05). Final body weight, average daily gain (ADG), average daily feed intake (ADFI), vulva length, vulva width, vulva area, relative weights of genital organ and proliferative changes of the ovary tissues in gilts fed ZEA-contaminated diet were increased (p<0.05) compared to the gilts fed the control diet. Addition of natural clay enterosorbent in the ZEA-contaminated diet showed a positive protection effect on ZEA feeding, and the protection was increased linearly or quadratically as clay content increased. However, in pigs fed a diet with clay alone at 2.5 g/kg level there was no significant impact (p>0.05) on all the parameters as compared to the control. It is suggested that feeding ZEA at about 1.0 mg/kg for 24 days might result in a deleterious effect in pigs, and addition of 5 or 10 g clay enterosorbent per kg diet can effectively neutralize the detrimental effects of the ZEA feeding.

Keywords

References

  1. Abbes, S., Z. Ouanes, J. B. Salah-Abbes, M. A. Abdel-Wahhab, R. Oueslati and H. Bacha. 2007. Preventive roles of aluminosilicate clay against induction of micronuclei and chromosome aberrations in bone-marrow cells of Balb/c mice treated with Zearalenone. Mutat. Res. 631:85-92 https://doi.org/10.1016/j.mrgentox.2007.01.012
  2. Abbes, S., Z. Ouanes, J. B. Salah-Abbes, Z. Houas, R. Oueslati, H. Bacha and O. Othman. 2006. The protective effect of hydrated sodium calcium aluminosilicate against haematological, biochemical and pathological changes induced by Zearalenone in mice. Toxicon. 47:567-574 https://doi.org/10.1016/j.toxicon.2006.01.016
  3. AOAC. 1990. Official methods of analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Virginia
  4. Cheng, Y. H., C. F. Weng, B. J. Chen and M. H. Chang. 2006. Toxicity of different Fusarium mycotoxins on growth performance, immune responses and efficacy of a mycotoxin degrading enzyme in pigs. Anim. Res. 55:579-590 https://doi.org/10.1051/animres:2006032
  5. Diekman, M. A. and G. G. Long. 1989. Blastocyst development on days 10 or 14 after consumption of zearalenone by sows on days 7 to 10 after breeding. Am. J. Vet. Res. 50:1224-1227
  6. Etienne, M. and M. Jemmali. 1982. Effects of Zearalenone (F2) on Estrous Activity and Reproduction in gilts. J. Anim. Sci. 55:1-10
  7. Farnworth, E. R. and H. L. Trenholm. 1981. The effect of acute administration of the mycotoxin zearalenone to female pigs. J. Environ. Sci. Health B, 16:239-252 https://doi.org/10.1080/03601238109372255
  8. Feng, J., M. Shan, H. Du, X. Han and Z. Xu. 2008. In vitro adsorption of zearalenone by cetyltrimethyl ammonium bromide-natural montmorillonite nanocomposites. Micropor. Mesopor. Mat. 113:99-105 https://doi.org/10.1016/j.micromeso.2007.11.007
  9. Fokas, P., G. Zervas, K. Fegeros and P. Zoipoulos. 2004. Assessment of Pb retention coefficient and nutrient utilization in growing pigs diets with added clinoptilolite. Anim. Feed Sci. Technol. 117:121-129 https://doi.org/10.1016/j.anifeedsci.2004.06.005
  10. Hauschild, L., P. A. Lovatto, C. R. Lehnen, A. Á. Carvalho, G. G. Garciae and C. A. Mallmann. 2007. Digestibility and metabolism of piglet diets containing zearalenone with addition of organoaluminosilicate. Pesqui. Agropecu. Bras. 42:219-224
  11. James, L. J. and T. K. Smith. 1982. Effect of dietary alfalfa on zearalenone toxicity and metabolism in rats and swine. J. Anim. Sci. 55:110-118
  12. Kalliamurthy, J., P. Geraldine and P. A. Thomas. 1997. Effects of Zearalenone on food consumption, growing rate, organ weight and serum testosterone level in male rats. J. Environ. Biol. 18:115-120
  13. Long, G. G. and M. A. Diekman. 1984. Effect of purified Zearalenone on early gestation in gilts. J. Anim. Sci. 59:1662-1670
  14. Maaroufi, K., L. Chekir, E. E. Creppy, F. Ellouz and H. Bacha. 1996. Zearalenone induces modifications of haematological and biochemical parameters in rats. Toxicon. 34:535-540 https://doi.org/10.1016/0041-0101(96)00008-6
  15. Mayura, K., M. A. Abdel-Wahhab, K. S. Mckenzie, A. B. Sarr, J. F. Edwards, K. Naguib and T. D. Philips. 1998. Prevention of maternal and developmental toxicity in rats via dietary inclusion of common aflatoxin sorbents: potential for hidden risks. Toxicol. Sci. 41:165-167
  16. National Research Council. 1998. Nutrient Requirements of Swine. 10th Ed. National Academy Press, Washington, DC
  17. Obremski, K., M. Gajecki, W. Zwierzchowski, L. Zielonka, I. Otrocka-Domagala, T. Rotkiewicz, A. Mikolajczyk, M. Gajecka and M. Polak. 2003. Influence of zearalenone on reproductive system cell proliferation in gilts. Pol. J. Vet. Sci. 6:239-245
  18. Papaioannou, D. S., S. C. Kyriakis, A. Papasteriadis, N. Roumbies, A. Yannakopoulos and C. Alexopoulos. 2002. A field study on the effect of in-feed inclusion of a natural zeolite (clinoptilolite) on health status and performance of sows/gilts and their litters. Res. Vet. Sci. 72:51-59 https://doi.org/10.1053/rvsc.2001.0521
  19. Pfaffl, M. W., I. G. Lange, A. Daxenberger and H. H. D. Meyer. 2001. Tissue-specific expression pattern of estrogen receptors (ER): Quantification of ER$\acute{a}$ and ER$\hat{a}$ mRNA with real-time RT-PCR. APMIS. 109:345-355 https://doi.org/10.1034/j.1600-0463.2001.090503.x
  20. Pond, W. G., J. T. Yen and V. H.Varel. 1988. Response of growing swine to dietary copper and clinoptilolite supplementation. Nutr. Rep. Int. 37:797-803
  21. Rotter, B. A., D. B. Prelusky and J. J. Pestka. 1996. Toxicology of deoxynivalenol (vomitoxin). J. Toxicol. Environ. Health. 48:1-34 https://doi.org/10.1080/009841096161447
  22. Rainey, M. R., R. C. Tubbs, L. W. Bennet and N. M. Cox. 1990. Prepubertal exposure to dietary zearalenone alters hypothalamo-hypophyseal function but does not impair postpubertal reproductive functions in gilts. J. Anim. Sci. 68:2015-2022
  23. Sabater-Vilarl, M., H. Malekinejad, M. H. J. Selmanl, M. A. M. Doelen and J. Fink-Gremmel. 2007. In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses. Mycopathologia 163:81-90 https://doi.org/10.1007/s11046-007-0093-6
  24. SAS Institute. 2003. SAS/STAT User's Guide: Version 9.1th edn. SAS Institute Inc., Cary, North Carolina
  25. Speranda, M., B. Liker, T. Speranda, V. Seric, Z. Antunovic, Z. Grabarevic, D. Sencic and Z. Steiner. 2006. Haematological and biochemical parameters of weaned piglets fed on fodder mixture contaminated by zearalenone with addition of clinoptilolite. Acta. Vet. (Beogr.) 56:121-136 https://doi.org/10.2298/AVB0603121S
  26. Stob, M., R. S. Baldwin, J. Tuite, F. H. Andrews and K. G. Gillette. 1962. Isolation of an anabolic, uterotrophic compound from corn infected with Gibberella Zeae. Nature 196:1318
  27. Voss, K. A. and W. M. Haschek. 2007. Fumonisins: toxicokinetics, mechanism of action and toxicity. In: Fusarium and their toxins: Mycology, occurrence, toxicity, control and economic impact (D. P. Morgavi and R. T. Riley). Anim. Feed Sci. Technol. 137:299-325 https://doi.org/10.1016/j.anifeedsci.2007.06.007
  28. Ward, T. L., K. L. Watkins, L. L.Southern, P. G. Hoyl and D. D. French. 1991. Interactive effects of sodium zeolite-A and copper in growing swine: growth, and bone and tissue mineral concentrations. J. Anim. Sci. 69:726-733
  29. Wasowicz, K., M. Gajecka, J. Calka, E. Jakimiuk and M. Gajecki. 2005. Influence of chronic administration of zearalenone on the processes of apoptosis in the porcine ovary. Vet. Med. (Czech) 50:531-536
  30. Yang, Z. B., H. Zao, C. C. Chen and F. Chi. 2008. Feeding different levels of zearalenone on growth, vulva size, and organ weight in postweanling female pig. Proc. 2008. Joint Meeting. J. Anim. Sci. 86(Suppl. 2):45(Abstr.)
  31. Young, L. G., H. Ping and G. J. King. 1990. Effects of feeding zearalenone to sows on rebreeding and pregnancy. J. Anim. Sci. 68:15-20
  32. Zwierzchowski, W., M. Przybylowicz, K. Obremski, L. Zielonka, E. Skorska-Wyszynska, M. Gajecka, M. Polak, E. Jakimiuk, B. Jana, L. Rybarczyk and M. Gajecki. 2005. Level of zearalenone in blood serum and lesions in ovarian follicles of sexually immature gilts in the course of zearalenone mycotoxicosis. Pol. J. Vet. Sci. 8:209-218

Cited by

  1. Effect on hepatonephric organs, serum metabolites and oxidative stress in post-weaning piglets fed purified zearalenone-contaminated diets with or without Calibrin-Z vol.96, pp.6, 2011, https://doi.org/10.1111/j.1439-0396.2011.01233.x
  2. ω-3 PUFA Rich Camelina Oil By-Products Improve the Systemic Metabolism and Spleen Cell Functions in Fattening Pigs vol.9, pp.10, 2014, https://doi.org/10.1371/journal.pone.0110186
  3. Effects of Modified Maifanite on Zearalenone Toxicity in Female Weaner Pigs vol.14, pp.2, 2015, https://doi.org/10.4081/ijas.2015.3597
  4. Products to alleviate the effects of necrotic enteritis and aflatoxin on growth performance, lesion scores, and mortality in young broilers vol.24, pp.2, 2015, https://doi.org/10.3382/japr/pfv015
  5. Clays as dietary supplements for swine: A review vol.6, pp.1, 2015, https://doi.org/10.1186/s40104-015-0037-9
  6. Modified halloysite nanotubes reduce the toxic effects of zearalenone in gestating sows on growth and muscle development of their offsprings vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0071-2
  7. Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0182220
  8. Scientific Opinion on the risks for public health related to the presence of zearalenone in food : Zearalenone in food vol.9, pp.6, 2010, https://doi.org/10.2903/j.efsa.2011.2197
  9. Zearalenone enhances reproductive tract development, but does not alter skeletal muscle signaling in prepubertal gilts vol.174, pp.1, 2012, https://doi.org/10.1016/j.anifeedsci.2012.02.012
  10. Effect of Degradation of Zearalenone-Contaminated Feed by Bacillus licheniformis CK1 on Postweaning Female Piglets vol.8, pp.10, 2016, https://doi.org/10.3390/toxins8100300
  11. Evaluation of a mycotoxin adsorbent in swine diets containing barley naturally contaminated with Fusarium mycotoxins vol.29, pp.3, 2010, https://doi.org/10.17533/udea.rccp.v29n3a02
  12. Dietary Silymarin Supplementation Alleviates Zearalenone-Induced Hepatotoxicity and Reproductive Toxicity in Rats vol.148, pp.8, 2010, https://doi.org/10.1093/jn/nxy114
  13. Bacillus licheniformis CK1 alleviates the toxic effects of zearalenone in feed on weaned female Tibetan piglets vol.96, pp.10, 2010, https://doi.org/10.1093/jas/sky301
  14. An Evaluation of the Supplementation of Dietary-Modified Palygorskite on Growth Performance, Zearalenone Residue, Serum Metabolites, and Antioxidant Capacities in Broilers Fed a Zearalenone-Contaminat vol.66, pp.6, 2010, https://doi.org/10.1346/ccmn.2018.064113
  15. Zearalenone induced oxidative stress in the jejunum in postweaning gilts through modulation of the Keap1-Nrf2 signaling pathway and relevant genes1 vol.97, pp.4, 2010, https://doi.org/10.1093/jas/skz051
  16. Biotransformation of the Mycotoxin Zearalenone to its Metabolites Hydrolyzed Zearalenone (HZEN) and Decarboxylated Hydrolyzed Zearalenone (DHZEN) Diminishes its Estrogenicity In Vitro and In Vivo vol.11, pp.8, 2010, https://doi.org/10.3390/toxins11080481
  17. Red-Crowned Crane ( Grus japonensis ) Reproduction Was Improved by Inhibiting Mycotoxins with Montmorillonite in Feed vol.12, pp.3, 2020, https://doi.org/10.3390/toxins12030191
  18. Protective effect of resveratrol against toxicity induced by the mycotoxin, zearalenone in a rat model vol.146, pp.None, 2010, https://doi.org/10.1016/j.fct.2020.111840
  19. Effects of short-term moderate ZEN consumption on uterosacral ligament elasticity in pubertal gilts vol.133, pp.None, 2020, https://doi.org/10.1016/j.rvsc.2020.09.023
  20. Mycotoxin Occurrence, Toxicity, and Detoxifying Agents in Pig Production with an Emphasis on Deoxynivalenol vol.13, pp.2, 2010, https://doi.org/10.3390/toxins13020171
  21. Investigation of the efficacy of mycotoxin-detoxifying additive on health and growth of newly-weaned pigs under deoxynivalenol challenges vol.34, pp.3, 2010, https://doi.org/10.5713/ajas.20.0567