Emotion Classification of User's Utterance for a Dialogue System

대화 시스템을 위한 사용자 발화 문장의 감정 분류

  • Kang, Sang-Woo (Department of Computer Sciences and Engineering, Sogang University) ;
  • Park, Hong-Min (Department of Computer Sciences and Engineering, Sogang University) ;
  • Seo, Jung-Yun (Department of Computer Sciences and Engineering, Sogang University)
  • Received : 2010.03.22
  • Accepted : 2010.12.25
  • Published : 2010.12.31

Abstract

A dialogue system includes various morphological analyses for recognizing a user's intention from the user's utterances. However, a user can represent various intentions via emotional states in addition to morphological expressions. Thus, a user's emotion recognition can analyze a user's intention in various manners. This paper presents a new method to automatically recognize a user's emotion for a dialogue system. For general emotions, we define nine categories using a psychological approach. For an optimal feature set, we organize a combination of sentential, a priori, and context features. Then, we employ a support vector machine (SVM) that has been widely used in various learning tasks to automatically classify a user's emotions. The experiment results show that our method has a 62.8% F-measure, 15% higher than the reference system.

대화 시스템은 사용자의 의도를 파악하기 위해 발화 문장으로부터 다양한 형태론적 분석을 시도한다. 하지만 사용자는 발화 문장에 포함된 사전적 의미를 통해 의도를 전달할 뿐만 아니라 현재 감정 상태에 따라서 사전적 의미와는 다른 의도를 표현하거나 동일한 의미를 갖는 발화에서 다양한 의도를 표현한다. 따라서 대화에서 사용자의 감정을 파악하는 것은 사용자의 의도를 다양한 방향으로 분석할 수 있게 한다. 본 연구는 기계 학습 방법을 사용하여 사용자 발화 문장에 자동으로 감정 범주를 할당하는 방법을 제안한다. 일반적 감정 범주를 정의하기 위해 세부적인 감정 모델로 인정받고 있는 Plutchick의 감정 모델을 사용하여 9개 감정 범주를 재 정의하고 감정 분류를 위한 자질 집합을 문장 자질과 선험적 자질 그리고 문맥 자질로 구분하였다. 실험을 통하여 3가지 자질들의 최적 조합을 구성하고 감정의 자동 분류를 위해 SVM 분류기를 사용하였다. 실험 결과에서 제안 시스템은 비교 시스템에 비해 15% 높은 62.8%의 F1-평가치 성능을 나타냄으로서 제안된 방법이 감정 분류에 효과적임을 증명한다.

Keywords