DOI QR코드

DOI QR Code

Melatonin Induces Apoptotic Cell Death via p53 in LNCaP Cells

  • Kim, Chi-Hyun (Department of Biomedical Engineering, College of Health Science, Yonsei University) ;
  • Yoo, Yeong-Min (Department of Biomedical Engineering, College of Health Science, Yonsei University)
  • Received : 2010.09.03
  • Accepted : 2010.11.22
  • Published : 2010.12.31

Abstract

In this study, we examined whether melatonin promotes apoptotic cell death via p53 in prostate LNCaP cells. Melatonin treatment significantly curtailed the growth of LNCaP cells in a dose- and time-dependent manner. Melatonin treatment (0 to 3 mM) induced the fragmentation of poly(ADP-ribose) polymerase (PARP) and activation of caspase-3, caspase-8, and caspase-9. Moreover, melatonin markedly activated Bax expression and decreased Bcl-2 expression in dose increments. To investigate p53 and p21 expression, LNCaP cells were treated with 0 to 3 mM melatonin. Melatonin increased the expressions of p53, p21, and p27. Treatment with mitogen-activated protein kinase (MAPK) inhibitors, PD98059 (ERK inhibitor), SP600125 (JNK inhibitor) and SB202190 (p38 inhibitor), confirmed that the melatonin-induced apoptosis was p21-dependent, but ERK-independent. With the co-treatment of PD98059 and melatonin, the expression of p-p53, p21, and MDM2 did not decrease. These effects were opposite to the expression of p-p53, p21, and MDM2 observed with SP600125 and SB202190 treatments. Together, these results suggest that p53-dependent induction of JNK/p38 MAPK directly participates in apoptosis induced by melatonin.

Keywords

References

  1. Ben Sabra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, Le Marchand-Brustel Y, Giorgetti-Peraldi S, Cormont M, Bertolotto C, Deckert M, Auberger P, Tanti .JF, Bost F. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 2010;70:2465-2475.
  2. Yu CX, Zhang XQ, Kang LD, Zhang PJ, Chen WW, Liu WW, Zhang JY. Emodin induces apoptosis in human prostate cancer cell LNCaP. Asian J Androl. 2008;10:625-634. https://doi.org/10.1111/j.1745-7262.2008.00397.x
  3. Lee DH, Kim C, Zhang L, Lee YJ. Role of p53, PUMA. and Bax in wogonin-induced apoptosis in human cancer cells. Biochem Pharmacol. 2008;75:2020-2033. https://doi.org/10.1016/j.bcp.2008.02.023
  4. Logan IR. McNeill HV, Cook S, Lu X, Lunec J, Robson CN. Analysis of the MDM2 antagonist nutlin-3 in human prostate cancer cells. Prostate. 2007;67:900-906. https://doi.org/10.1002/pros.20568
  5. Sainz RM, Mayo JC, Tan DX, Leon. J, Manchester L, Reiter RJ. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate. 2005;63:29-43. https://doi.org/10.1002/pros.20155
  6. Tam CW, Mo CW, Yao KM, Shiu SY. Signaling mechanisms of melatonin in antiproliferation of hormone-refractory 22Rv1 human prostate cancer cells: implications for prostate cancer chemoprevention. J Pineal Res. 2007;42:191-202. https://doi.org/10.1111/j.1600-079X.2006.00406.x
  7. Cucina A, Proietti S, D'Anselmi F, Coluccia P, Dinicola S, Frati L, Bizzarri M. Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. J Pineal Res. 2009;46:172-180. https://doi.org/10.1111/j.1600-079X.2008.00645.x
  8. Martin-Renedo J, Mauriz JL, Jorquera F, Ruiz-Andres O, Gonzalez P, Gonzalez.-Gallego J. Melatonin induces cell cycle arrest and apoptosis in hepatocarcinoma HepG2 cell line. J Pineal Res. 2008;45:532-540. https://doi.org/10.1111/j.1600-079X.2008.00641.x
  9. Xi SC, Tam PC, Brown GM, Pang SF, Shiu SY. Potential involvement of MT1 receptor and attenuated sex steroid induced calcium influx in the direct anti-proliferative action of melatonin on androgen-responsive LNCaP human prostate cancer cells. J Pineal Res. 2000;29:172-183. https://doi.org/10.1034/j.1600-079X.2000.d01-64.x
  10. Lupowitz Z, Zisapel N. Hormonal interactions in human prostate tumor LNCaP cells. J Steroid Biochem Mol Biol. 1999;68:83-88. https://doi.org/10.1016/S0960-0760(98)00164-2
  11. Moretti RM, Marelli MM, Maggi R, Dondi D, Motta M, Limonta P. Antiproliferative action of melatonin on human prostate cancer LNCaP cells. Oncol Rep. 2000;7:347-351.
  12. Xi SC, Siu SWF, Fong SW, Shiu SYW. Inhibition of androgen sensitive LNCaP prostate cancer growth in vivo by melatonin: association of antiproliferative action of the pineal hormone with MT1 receptor protein expression. Prostate. 2001;46:52-61. https://doi.org/10.1002/1097-0045(200101)46:1<52::AID-PROS1008>3.0.CO;2-Z
  13. Joo SS, Yoo YM. Melatonin induces apoptotic death in LNCaP cells via p38 and JNK pathways: therapeutic implications fox prostate cancer. J Pineal Res. 2009;47:8-14. https://doi.org/10.1111/j.1600-079X.2009.00682.x
  14. Galluzzi L, Morselli E, Kepp O, Tajeddine N, Kroemer G. Targeting p53 to mitochondria for cancer therapy. Cell Cycle. 2008;7:1949-1955. https://doi.org/10.4161/cc.7.13.6222
  15. Califice S, Waltregny D, Castronovo V, van den Brule F. Prostate carcinoma cell lines and apoptosis: a review. Rev Med Liege. 2004;59:704-710.
  16. Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325-334. https://doi.org/10.1016/S0092-8674(00)80416-X
  17. Kim YS, Lee HJ, Jang C, Kim HS, Cho YJ. Knockdown of RCAN1.4 Increases Susceptibility to FAS-mediated and DNA-damage-induced Apoptosis by Upregulation of p53 Expression. Korean J Physiol Pharmacol. 2009;13:483-489. https://doi.org/10.4196/kjpp.2009.13.6.483
  18. Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E, Fornace AJ Jr. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 1999;18:6845-6854. https://doi.org/10.1093/emboj/18.23.6845
  19. Huang C, Ma WY, Maxiner A, Sun Y, Dong Z. p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J Biol Chem. 1999;274:12229-12235. https://doi.org/10.1074/jbc.274.18.12229
  20. She QB, Chen N, Dong Z. ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem. 2000;275:20444-20449. https://doi.org/10.1074/jbc.M001020200
  21. Sayed M, Kim SO, Salh BS, Issinger OG, Pelech SL. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem. 2000;275:16569-16573. https://doi.org/10.1074/jbc.M000312200
  22. Hu MC, Qiu WR, Wang YP. JNK1, JNK2 and JNK3 are p53 N-terminal serine 34 kinases. Oncogene. 1997;15:2277-2287. https://doi.org/10.1038/sj.onc.1201401
  23. Kwon YW, Ueda S, Ueno M, Yodoi J, Masutani H. Mechanism of p53-dependent apoptosis induced by 3-methylcholanthrene. J Biol Chem. 2002;277:1837-1844. https://doi.org/10.1074/jbc.M105033200

Cited by

  1. Melatonin triggers p53Ser phosphorylation and prevents DNA damage accumulation vol.31, pp.24, 2010, https://doi.org/10.1038/onc.2011.469
  2. Blockage of melatonin receptors impairs p53-mediated prevention of DNA damage accumulation vol.34, pp.5, 2013, https://doi.org/10.1093/carcin/bgt025
  3. Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review vol.17, pp.12, 2010, https://doi.org/10.1517/14728222.2013.834890
  4. CCAR2 deficiency augments genotoxic stress-induced apoptosis in the presence of melatonin in non-small cell lung cancer cells vol.35, pp.11, 2010, https://doi.org/10.1007/s13277-014-2370-6
  5. Circadian System and Melatonin Hormone: Risk Factors for Complications during Pregnancy vol.2015, pp.None, 2010, https://doi.org/10.1155/2015/825802
  6. Oxidative Stress Type Influences the Properties of Antioxidants Containing Polyphenols in RINm5F Beta Cells vol.2015, pp.None, 2010, https://doi.org/10.1155/2015/859048
  7. Melatonin induces calcium mobilization and influences cell proliferation independently of MT1/MT2 receptor activation in rat pancreatic stellate cells vol.31, pp.2, 2015, https://doi.org/10.1007/s10565-015-9297-6
  8. Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects vol.7, pp.15, 2010, https://doi.org/10.18632/oncotarget.7978
  9. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis vol.18, pp.4, 2010, https://doi.org/10.3390/ijms18040843
  10. AA-NAT, MT1 and MT2 Correlates with Cancer Stem-Like Cell Markers in Colorectal Cancer: Study of the Influence of Stage and p53 Status of Tumors vol.18, pp.6, 2010, https://doi.org/10.3390/ijms18061251
  11. Melatonin and Hippo Pathway: Is There Existing Cross-Talk? vol.18, pp.9, 2010, https://doi.org/10.3390/ijms18091913
  12. Melatonin: An Anti-Tumor Agent in Hormone-Dependent Cancers vol.2018, pp.None, 2010, https://doi.org/10.1155/2018/3271948
  13. Promising Antineoplastic Actions of Melatonin vol.9, pp.None, 2010, https://doi.org/10.3389/fphar.2018.01086
  14. Melatonin and Cancer Hallmarks vol.23, pp.3, 2018, https://doi.org/10.3390/molecules23030518
  15. Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment vol.234, pp.5, 2019, https://doi.org/10.1002/jcp.27391
  16. Potential use of melatonin in skin cancer treatment: A review of current biological evidence vol.234, pp.8, 2010, https://doi.org/10.1002/jcp.28129
  17. Melatonin: an endogenous miraculous indolamine, fights against cancer progression vol.146, pp.8, 2010, https://doi.org/10.1007/s00432-020-03292-w
  18. Melatonin, aging, and COVID-19: Could melatonin be beneficial for COVID-19 treatment in the elderly? vol.50, pp.6, 2010, https://doi.org/10.3906/sag-2005-356
  19. Two neuroendocrine G protein‐coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives vol.236, pp.4, 2010, https://doi.org/10.1002/jcp.30062
  20. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders vol.10, pp.9, 2010, https://doi.org/10.3390/antiox10091483